SPE煤层气英文翻译_第1页
SPE煤层气英文翻译_第2页
SPE煤层气英文翻译_第3页
SPE煤层气英文翻译_第4页
SPE煤层气英文翻译_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计(论文)外文翻译学生姓名:田晓学号:xxx专业班级:石油工程指导教师:王明教授2012年6月10日原文:tateoftheArtinCoalbedMethaneDrillingFluids现代煤层气钻井液工艺水平LenV.Baltoiu,BrentK.Warren,Q'MaxSolutionsInc,ThanosA.Natras,EncanaCorpAbstractTheproductionofmethanefromwetcoalbedsisoftenassociatedwiththeproductionofsignificantamountsofwater.Whileproducingwaterisnecessaryinordertodesorbthemethanefromthecoalitself,thedamagefromthedrillingfluidsusedisdifficulttoassessbecausethegasproductionfollowsweekstomonthsafterthewellisdrilled.Commonlyaskedquestionsinclude:Whataretheimportantparametersfordrillinganorganicreservoirrockthatisboththesourceandthetrapforthemethane?Hasthedrillingfluidaffectedthegasproduction?Arethecleatsplugged?Doesthe“filtercake”haveanimpactontheflowofwaterandgas?Arestimulationtechniquescompatiblewiththedrillingfluidsused?Thispaperdescribesthedevelopmentofauniquedrillingfluidtodrillcoalbedmethanewells,withaspecialemphasisonhorizontalapplications.Thefluiddesignincorporatesproductstomatchthedelicatesurfacechemistryonthecoal,amattingsystemtoprovidebothboreholestabilityandminimizefluidlossestothecleats,andaBREAKERmethodofremovingthemattingsystemoncedrillingiscompleted.Fieldresultsfromthreehorizontalwellswillbediscussed,twoofwhichweredrilledwiththenewdrillingfluidsystem.Thewellshavedemonstratedexceptionalstabilityincoalforlengthsto1000m,controlleddrillingratesandeaseofrunningslottedliners.Methodsfor,andresultsof,placingtheBREAKERinthehorizontalwellsarecoveredindepth.IntroductionProductionofmethanefromcoalhasbecomeoneofthemoreinterestingpracticesinrecentyearstoproducehydrocarbons.1-6IntheUnitedStatesin2005,itisestimatedthat11.7%ofallgasproducedisfromcoalbedmethane(CBM)sources7.Whileinconventionaldrillinginsandstonesandcarbonatesitisoftensimpletotellifadrillingfluidisfullyorpartiallyresponsibleforformationimpairment,thisisoftenmuchmoredifficultinCBMwells.WhenaCBMwelldependsupontheproductionofwatertoreduceformationpressureandthusleadtogasdesorption,theinfluenceofdrillingfluidbecomesmaskedorevenforgotten.AsthefrontiersofCBMwellsarepushedintothehorizontaldrillingrealm,theimportanceofthedrillingfluidismagnified.Thefluidneedstobothstabilizethewellboreduringthedrillingphase,butatthesametimeneedstominimizeanyproductionshortfallsduetodamage.AsimpleN2fracturewhichmaybeusedona5-10meterverticalcoalseamisnotasimplemattertotransfertoa500-1000meterhorizontallydrilledcoalsection.Thispaperdiscusseshowcoalgeologyimpactsdrillingplanning,drillingpractices,thechoiceofdrillingfluidandcompletion/stimulationtechniquesforUpperCretaceousMannvilletypecoalsdrilledwithintheWesternCanadianSedimentaryBasin.AfocusonhorizontalCBMwellsispresented.BasicCoalGeologyIfyouweretohandapieceofcoaltosomeoneyouknewandaskedthemtodescribeit,theywouldprobablysay“it’sblack”.Thefactistheyareright,butthereismoretocoalthanwhatmeetstheeye,especiallyifyoudon’tknowwhatyou’relookingfor.Coalisaverycomplicatedorganicrockmadeupoftinymicroscopicconstituentscalledmacerals,whichareanalogoustothemineralsfoundininorganicrockssuchasquartz.Maceralsaremadeupofvariouslithifiedplantdebrissuchasspores,resins,pollens,waxes,cuticles,andresins.Therearethreemaingroupsinwhichmaceralsareclassified,thevitrinitegroup,inertinitegroup,andtheliptinitegroup,allwhichcanbebrokendownfurtherintoseveralindividualmacerals.Maceralsofsimilarcharactercanbegroupedintowhatarecalledmicrolithotypes,microscopicallydiscernibleunitsanalogoustolaminationsinsedimentaryrockssuchassandstones.Microlithotypesarefurthercombinedtoformmacroscopicallyvisibleunitscalledlithotypes.Lithotypes,whichareanalogoustobedsinothersedimentaryrocks,areclassifiedonthebasisoftheirbrightness.Forexample,alithotypepredominantlymadeupofthevitrinitegroupwouldlookverybright.Incontrast,coalrichininertinitewouldlookverydull.Thedullandbrightbandstellussomethingabouttheheterogeneityofthecoalandhowvariableitsphysicalmakeupisbothverticallyandlaterally.Eachlithotypecomeswithitsownsetofphysicalpropertieswhichcanenhanceorimpedeproductionofcoalbedmethane.Coalrankisanotherimportantphysicalproperty.Coalrankisameasureofthedegreeofchemicalalterationthecoalhasundergone(alsoreferredtoasdiagenesis).Thelongerthecoalificationprocessgoeson,thehigherrankthecoalbecomes.Vitrinitecontentalsochangeswithcoalrank,asdoseveralotherphysicalpropertiesimportanttoCBMpotential8(Figure1).Figure1CoalRankingClassificationbyVitriniteReflectance,VolatileMatter,BedMoistureandCaloricValueCleatingThesinglemostimportantphysicalcharacteristicofanycoalrelativetoCBMproductionispermeability.Permeabilityincoalisadirectfunctionofthecleatand/orfracturenetworkpresent.Ascoalmaturesthroughtheprocessofcoalification,moistureandvolatilegassesareslowlydrivenoffresultingintheshrinkingofthecoalmatrix.Asthecoal‘shrinks’,cleatsbegintoform,similartothecracksthatdevelopwhenmuddriesundertheheatofthesun.Thecleat/fracturesystemincoalisalsoreferredtoasthemacroporesystem.Agoodmetaphorforvisualizationisaloafofslicedbread(Figure2).Thespacesbetweentheslicesofcoalarefracturesthatarereferredtoas“facecleats”.Thespaceswithintheslicesofcoalarereferredtoas“buttcleats”.Theymay,ormaynot,intersectwiththefacecleats.Whenwerefertocoal“permeability”weactuallyrefertothepermeabilityobtainedfromthefracturesnetwork.Facecleatsareveryimportantastheyarethebackboneofcoalpermeability.Buttcleatsmay,contributetosuchpermeabilityiftheyintersectthefacecleatnetwork.Athirdsetoffracturesmaybefoundoncoalsthathavebeenexposedtotectonicstresses.Thesethirdsetsoffracturesarereferredtoas“tectonicfractures”andareveryimportanttoCBMproduction.Tectonicfracturesincreasethepermeabilityofthecoalbytwomechanisms:(a)theirownpresenceand(b)byconnectingtosomeofthebuttcleatspreviouslynotpartofthefracturenetwork.Withthegreatheterogeneitywithinasinglecoalnetwork,therangeoffracturespresencecanvaryfromnofracturestocompletethree-setfracturedevelopment.Figure2Stylizeddepictionofacoalshowingthefacecleats——,buttcleats——andtectonicfractures——Maceraltypeandcoalrankarethetwomostimportantcontrollingfactorsincleatdevelopment.Forexample,avitriniterichhighrankingcoalwillhaveexcellentpotentialforcleatdevelopment.Incontrastaninertiniterich,lowrankcoalwillhaveverylittlepotentialforcleatdevelopment.Asdiscussedbefore,coalscanbeveryheterogeneouswithseverallithotypesoveraverysmallverticaldistance(cmtom).Ifyouhadtwolithotypesverticallyadjacenttooneanother,onerichinvitriniteandtheotherrichininertinite,thevitriniterichlayer,orlithotype,wouldshowbettercleatingeventhoughtheentirecoalisofequalrank9(Figure3).Figure3OutcropoftheHorsehoeCanyonformation,PaintearthMine,Alta.Athicker,poorlycleatedinertiniterichcoaloverlyingathinnerseamofwellcleatedvitriniterichcoal.Depthisanimportantfactortoconsiderwhentalkingaboutcleatsandtheirapertures.Generallyspeaking,theeffectivepermeabilityofcoaldecreaseswithburialduetocompaction.StorageandDesorptionMethanecanbestoredintwoplacesincoal;inthecleats/fractures,ormacroporestructure;andinthematrix,ormicroporestructure.Themacroporesystemiswheretheeffectivepermeabilityismeasuredandaretheconduitsinwhichthemethanetravelsintothewellbore.Thecleats/fracturesarefilledwithmethanemoleculesthathaveattached,oradsorbed,onthesurfaceofthecoal;thisisknownas“free”gas(Figure4).Inthemicroporesystem,thereissignificantlylesspermeability.Imagineaspongewithmillionsoftinycavities,butnoneofthemconnectedtooneanother.Themajorityofthemethanegasisstored(adsorbed)inthesemicropores,ormatrixporosity,andisreferredtoas“bound”or“trapped”methane.Figure4:Methanemoleculesadsorbedontocleatnetworkofcoal.Desorption,theoppositeofadsorption,occurswhenamethanemoleculedetachesfromthecleatfaceandstartstoflowtowardanareaoflowerpressure,inthiscasethewellbore.Asdesorptioncontinuestotakeplace,themethaneadsorbedontothecleatface,or“free”gas,beginstodissipate.Whenthereisnomore“free”gastobedesorbed,theboundortrappedgaswillstarttomakeitswayintothecleatnetworkbytheprocessofdiffusion.10Oncethe“bound”methanemoleculesreachthecleatface,migrationtothewellboreisacceleratedduetothegreaterpermeabilityofthecleatnetwork.Coalvs.Non-coalReservoirsThemaincharacteristicthatdistinguishescoalbedreservoirsfromconventionalreservoirs(i.e.sandstones&carbonates)isthesourceofthehydrocarbonsfoundinthem.Inconventionalreservoirs,thehydrocarbonsaregeneratedinsourcerocksfoundelsewhereinthestratigraphicsectionandovertime,migrateintotheseporousreservoirsandbecometrapped.Coalbedreservoirscanalsobecome‘charged’withhydrocarbonsviamigrationfromorganicrichsourcerocksbut,thedifferenceisthatcoalcantypicallygenerateitsownhydrocarbonfromwithin.Nooutsidesourceisnecessaryascoalitselfisanorganicrichsourcerock.Aseconddifferenceisthesurfaceofthecoalismorechemicallychargedthanthesurfaceofconventionalsandstoneorcarbonaterocks.WhatisevenmoreintriguingisthefactthatitschargehasthetendencytochangewiththechangeofthepHinitsenvironment.Asseenfurtherinthispaper,thesurfacechargeplaysanimportantroleindrilling,formationdamageandproduction.RockMechanicsUnlikemostconventionalreservoirrocks,coalhaslowintegrityandisveryfriable.TheMannvillecoalinthesubsurfaceofAlberta,Canada,canbefoundatdepthsthatvarybetween600mtogreaterthan2000m.Ifweconsideracubeofrockanditsstressdistribution,σv–theverticalstress,σHzmax–themaximumhorizontalstressandσHzmin–theminimumhorizontalstress,incoalfoundatdepth,theσvisthelargest.CoalhasaPoissonsratioasmuchasoneorderofmagnitudehigherthanconventionalrock,andwillhavethetendencytocompressundersufficientload.Thisphenomenoncontributestoboreholeinstabilitymechanismwhendrillingincoal(Figure5).Inconventionalreservoirrocks,theσHzmaxcanbeashighassixtimestheσHzmin.Therefore,thepathofleastimpactwhendrillinghorizontallyisperpendiculartothemaximumhorizontalstress.IncoaltheσHzmaxtypicallyisonly1.6timesasmuchastheσHzmin.However,whencombinedwithcoal’slowstrength,itstandstologicthatthesameprincipleapplies.Fieldapplicationshaveprovedthistobetrueespeciallywhentectonicfractureswerepresentincoal.11Notsurprisingly,withcoalbeingsuchaheterogeneousmaterial,exceptionstotheguidelineabovedooccur.AnarrowcorridorbetweenBarrheadandFortAssiniboine(justnortheastofEdmontonincentralAlberta)existswheredifferentlyorientatedhorizontalwellshavesuccessfullyproducedcoalbedmethane.Figure5:Depictionofstressesandorientations–Verticalstressisshowninblue,themaximumhorizontalstressinred,minimumhorizontalstressingreen.DrillingConsiderationsEarlydrillingofhorizontalwellsintheMannvillecoalinAlbertaencounteredtremendousboreholestabilityproblemsinmostareas.However,innovationandexperimentationhadledtoathreepointsystemthatprovedquitesuccessful.Thissysteminvolvescarefulconsiderationof:(a)welltrajectory/welldesign;(b)drillingpracticesand(c)drillingfluid.WellTrajectorySincecoaldoesnothaveaporosityandpermeabilityintheconventionalsense,thequestionofexpectedenhancedproductionfromahorizontalwell,ascomparedtoaverticalwellisongoing.Whilehigh-densityspacingofverticalwellsfollowedbynitrogenfracturingofthecoalhasprovedtobeeconomicalinshallowcoalssuchastheHorseshoeCanyoninAlberta6,deepercoalhorizonssuchastheMannvillehaveproventobemorechallenging.PoorproductionratesledtoeconomicswhichdonotsupporthighdensityverticalwelldrillingforMannvilleCBMwells.Essentially,theexposuretothedesirablecoalcleatingnetworkisverylimitedinverticalwells.Horizontalwellswerethereforedesignedanddrilledinordertointersectasmuchfracturenetworkaspossible,especiallythefacecleatsinthickerMannvillecoalseams.InAlberta,duetothepresenceoftheRockyMountainsarch,theσHzmaxhasaNE-SWorientation.Interestinglyenough,theorientationoffacecleatsrunsonthesameNE-SWdirection.ThereforethewellsthathaverecordedbettersuccessweredesignedwithtrajectoriesNW-SEorSE-NW,achievingatthesametimeanearperpendicularitytothemaximumhorizontalstressandtothefacecleats(Figure6).Figure6:MapofAlbertashowingstressesandcleating.Thebluelinesrepresentthepreferredorientationofthefacecleats,inaNE-SWdirection.ThisisthesamedirectionastheprinciplehorizontalstressσHzmax.CurvedredlinesindicatethefrontlineoftheRockyMountains.ThemajorityoftheMannvillehorizontalCBMwellshavebeendrilledbasicallyNW/SEdirection.Practicehasshownthatcoalwillnotsupporttightwellradius,doglegsorkeyseating.Thereforelowbuildangles,largeradiuswellswithverysmoothcurvesproducedsignificantbenefitsondrillingstablewellboresincoal.WellDesignTodateinAlberta,Canada,twodistinctwellprofileshavebeenutilized:the“motherbore”designandthe“classic”design.Themotherboredesigninvolvesdrillingadeviatedintermediateholethroughthecoal,settinganintermediatecasing,cuttingawindowanddrillingmultiplehorizontallegsintothecoalseam(Figure7).Aslottedlineristhenrunineachleg.Theperceivedadvantagesofthisdesignrelatetothepossibilityofdrillingmultiplehorizontallegsaswellastheuseofasingledewateringpumpforthoselegs.However,therearemanydisadvantagesassociatedwiththisdesign:(1)Greaterpotentialforboreholeinstabilityissuesonthemainholearoundthebendduetothewelltrajectory,(2)Slottedlinershavetobesetintheopenhole,~4mto6moutsidethewindowandtypicallyinawatersensitiveshale,(3)Inordertoreachthedewateringpump,theformationbrinehastotraveluphillaroundthebendtoreachthewindow,(4)Thedrillingfluidusedtodrillthemainholewillbecomecontaminatedwithcuttingsotherthancoalandthoseareintroducedintothecoalcleats,thereforeincreasingthepotentialforformationdamage.Figure7The“MOTHERBORE”designinwhichmultiplelegsarepossiblefromonecentralcasingstringTheseconddesignistheclassicdesignwhichinvolvesdrillinganintermediateholedeviatedto~900inthecoalandsettinganintermediatecasing.Thendrillinga~1,000mhorizontallegwiththetoeuplifted~20comparedtoheel,suchthatgravitywillhelpwiththedewateringprocess.Allthedisadvantagesfromthepreviousdesignarealleviatedplus,thisdesignallowsformultiplehorizontallegsinthesamegeneraldirection,the“fork”design(Figure8).Figure8:The“CLASSIC”CBMHorizontalwellboredesignwithasinglehorizontalleg.Thislegisoftenslightlyinclinedtoassistindrainageofwaterduringproductionphase.Ineitherdesignitisimperativethatthehorizontallegbemaintainedwithinthecoalhorizon,whichincertainsituationscanbeonly1mthick.Ifthewelltrajectorybouncesinandoutofthecoal,penetratingtheunderandoverlayingbedsoftypicallywatersensitiveshaleandmudstones,twoproblemsmayoccur:(a)greaterpotentialforboreholestabilityissuesand(b)introductionofformationdamagingsolidstocoalreservoirleadingtoareductioninproduction.DrillingPracticesCoalformationshavebeenregardedasnuisanceformationsbythedrillingindustryuntilrecently.Assuch,theconventionalor“oldschool”drillingpracticesborrowedfromdrillingconventionalrockdonotapplyproperlytodrillingincoalreservoirs.Inordertounderstandwhythesepracticesdon’tapply,weneedtounderstandthemechanismsbehindboreholecollapsewhiledrillingcoal.Assumingaportionoftheboreholewalltakenfromtheupperholeinthehorizontalsectionandlookingatitthroughamicroscopewewillnoticefacecleats,buttcleatsandtectonicfractures.Theconventionalwayofthinkingistodrillcoalasfastaspossiblewithinhibitivedrillingfluids,brinesorinhibitivewater,withhighpumpoutputstocleantheholeandcaseitbeforeboreholestabilityissuesdevelop.Inhighlyfracturedcoal,thisdrillingapproachprovedtobeadisasterandoftenresultedinstuckpipeandlostbottomholeassemblies.Duetotheirmicro-permeabilitythatimpedesinitialspurtlossacrosscoal(justthesameasacrossshale),afiltercakecannotbebuiltonthefaceofacoal.Whendrillinghighlyfracturedcoalswithwater/brineorconventionaldrillingfluids,thesefluidsinvadethefracturenetworkandcarrytwothingswiththem:(a)pressure–whichaccordingtoBernoulli’sLawinanincompressiblefluidwilldistributeitselfinstantaneouslyandinalldirectionand(b)particles–coalparticlesandotherfluidcomponentsparticles.Drillingoverbalanceimpliesthatthebottomholepressureisgreaterthantheformationpressure.However,whenfluidpenetratesthemicro-fracturenetwork,theformationpressureintheimmediatevicinityofthewellborebecomesequaltothebottomholepressure,thereforethepressurebelowandaboveacoalchipcontainedwithinthefracturenetworkequalizesandthechipfallsinsidethewellbore.Typically,themorefluidlosttotheformation,thedeeperthepressureequalizationthatoccurs,andthegreaterlikelihoodforsloughingofcoalcavings.Suchcavingsareusuallyblocky,withsquareedgesandcanbequitelarge,upto10-13cmacross.Sloughinghappensinarelativelyshortperiodoftimeandinverylargevolumes.The“oldschool”approachhasbeentoincreasethemuddensityto“holdthewellback”,toincreasethepumpoutputandfluidrheologytocleanthehole,tomixconventionalLCMtoreducethelossesandtoworkthepipeacrossthetightzoneinthewellbore.Oncloseanalysis,noneoftheseapproachesproducetherequiredresults.Whenthemuddensityisincreasedwithbariteorcalciumcarbonate,thebottomholepressure(BHP)vectorisincreasedforashortperiodoftime.However,atthistimethefracturesincoalarepartiallyproppedopenandmorefluidpenetratesinsidethem.InamatterofhourstheBHPdissipatestoequaltheformationpressure(FP),andthesloughingcontinues(Figure9).IncreasingthepumpoutputandfluidrheologywillincreasetheBHPthroughpressurelosses,butatthesametimeincreasingfluidpenetrationandwithgreaterforcesbetweenthefluidandthechipsofcoalintheimmediatevicinityofthewellbore.Infracturedcoal,higherhydraulicprofilesarenotdesired.Whilethepracticeofincreasingthepumpoutputandmudrheologyforholecleaningworksinconventionalrock,coaldoesnotneedsuchanapproach.Duetocoal’slowspecificgravityof1.2to1.5,CBMwellscaneasilybecleanedwithwater-basedfluidsoflowviscosity.Itisnottheweightofthecoalcuttings/cavingsthatposeaholecleaningissuebutthesizeandvolumesofthemandthefastrateatwhichcoalsloughs.MixingconventionalLCMsdoesnotworkeither,especiallywhenrigidparticlesareinvolved.Thehardrigidparticlesactasproppantagentsforthefracturesthusleadingtoenhancedlossestothecleatnetwork.Inaddition,ifbridgesarecreatedwithhardparticles,theymigratedeepinsidethefracturesthereforedrasticallyreducingthepermeability.ConventionalLCM(fibers,cellophane,sawdust,etc.)aretoobigtocreateaneffectivebridge.Figure9:Thepressures–bottomholeandformation–aresoonequalizedincoalthroughthefacecleatandtectonicfracturenetworksOneofthecommon“oldschoolapproaches”thatdoesnotworkincoalishard-workingthepipewhensignsofboreholecollapsestarttoshowatsurface:indicationsincludeincreasedtorqueanddrag,increasedpressure,tightholeand/orreducedflowreturns.Thecollapsehastodowiththepipemovementandthehydraulicscreatedbythatmovement.Theprocedureinvolvesworkingthepipethroughthetroubledzoneatincreasedspeeds,whilepumpingandrotatingtocleanthebridgeformedbythesloughingcoal.Surgeandswabpressuresgeneratedbythepipemovementandthepistoneffectofthebithaveadevastatingeffectonfracturedcoalandoftenresultsinmoresloughing,thenstuckpipewiththelossofexpensivedirectionaldrillingequipment.ThedrillingapproachthathasprovenverysuccessfulinfracturedMannvillecoalsinAlberta,the“newschool”method,couldbedescribedbyoneword–finesse.FollowingaresomeofthenewpracticeswhichaidindrillingCBMwells,andspecificallyhorizontalCBMwellsintheMannville.(1)Rigswithtop-drivesarepreferredduetotheirabilitytocontrolpipespeedsbetterthanconventionalrigs.(2)Controldrillingatratesof<15m/hrhasdemonstratedfarbettersuccessthanthefast,“in-and-out”approach.Whentherate-of-penetration(ROP)iscontrolled,signsofboreholeinstabilityaredetectableandcanbecorrectedbeforetheybecomeaseriousdrillingproblem.(3)Tripspeedshavetobemonitoredatwellbelow0.5m/stoalleviatethepotentialforsurgeandswab.(4)Drillingbitsideallymeetthreecriteria:(a)nonozzles,(b)backreamingcapabilityand(c)generatelargecoalcuttings.NozzlesarenotrequiredbecausecontroldrillingisappliedatrelativelylowROPs.Also,bitsdon’tballincoal.Thebackreamingcapabilitiesarevitaltosuccessfuldrilling.Whenfirstsignsofboreholeinstabilityarenotedatsurface,continuousbackreamingatreducedpumpoutputsisrecommendedthroughthetroubledzone.Thenincrementalreamingatnormalpumpoutputisrecommendedwhileadjustingthemudproperties.Typicallythereisnoneedtoincreasethemuddensityorthemudrheology,whentherightmudisused.Thereasoningforlargecuttingsgenerationhastodowithformationdamage.Finecoalhasaverylargesurfacearea,ischemicallychargedandcanpenetrateinsidethefracturesandposeaseriousformationdamagethreat.Finecoalhastheabilitytobindthecomponentsofthedrillingfluidmakingitlesseffectivetonewwellboreandposingotherdrillingrisks.(5)Moreslidingandlessrotatingisrecommendedwhiledrillinghorizontally.(6)LowerRPMsofthebitarerecommendedforthesamereasons.DrillingFluidsTodate,anewdrillingfluidhasbeenusedtosuccessfullydrilloverthirtyCBMMannvillehorizontalwellsbynineoperatorsinAlberta,Canada,withhorizontallegsbetween750–1200m,allofthemreachingtheplannedtotaldepth.Thesuccessbehindthisnewdrillingfluidresidesinitsinnovativeapproach.Ifafiltercakecannotbeachievedacrossthecoal,thenthenextbestthingisaseriesofintimateverylowpermeabilitysurfacebridges,ormats,acrosstheintersectedfractures,facecleatsandtectonicfractures.Thefluidachievesthisbyexploitingthestrongsurfacechemicalchargeofthecoal.Therearetwoversionsofthenewlydevelopeddrillingfluid.Oneisacombinationofnaturalpolymers,bentoniteandotherproprietaryproductsanditisintendedforcasedholecompletions.Theotheroneisformedofacombinationofnaturalpolymersandotherproprietaryproductsandisintendedforopenholecompletions.ThissecondversionofthefluidcanbedestroyedwithaBREAKER.Whendensityisrequired,thefluidisbuiltonabrinebackbonesuchthatdensityisachievedwithoutintroducinghardparticlestothesystem.Asdrillingprogressesinfracturedcoal,thepolymerswithinthefluidattachthemselvestotheendsofthefracturescreating“bridgeheads”.Then,incombinationwiththeotherproductsinthefluidtheyformsurfacebridgesacrossfractures,sometimesreferredtointheindustryas“buttons”.Thesearemulti-layerflexiblematsastheyareformedofflexiblematerialsonly.Fieldapplicationhasdemonstratedtheflexibilityofthebridges.Whenhydraulicsvaluesareincreased,itispossibletohave3to4m3offluidlosttothehole,onlytoberegainedonconnections.Bycreatingtheseverylowpermeabilitybridgesacrossthefractures,thedrillingfluidmaintainsaconstantpositivepressure(ΔP=BHP–FP)onthewallsofthewellbore.Ifthepressureequalizationstops,thentheboreholeinstabilityisalleviated(Figure10).Figure10:Flexiblebridge/matformedacrossthefacecleatandtectonicfractures.TheBHPismaintainedhigherthantheFPwithresultingboreholestabilityanddecreasedformationdamage.Atthispointintimeithastobeemphasizedthatifthedrillingpracticesareincorrectorifthewelltrajectoryisnotcarefullyplannedtomitigateintersectingthefacecleatswiththelocalizedrockstressdistribution,thefluidalonewillnotalleviatethedrillingproblems.Completion/StimulationAssuggestedbefore,twotypesofwellcompletionwereperformedtodateonwellsdrilledwiththisinnovativedrillingfluid:openholecompletionandcasedholecompletion.Inthecaseofcasedholecompletion,atwelltotaldepthalinerisrunandcementedinthehorizontalsection.Theholeisthenperforatedandanitrogenfracoperationisconducted.Inthecaseofopenholecompletion,atwelltotaldepthaslottedlinerisrun.ThehorizontalsectionisdisplacedtoaBREAKERthatcompletelydestroystherheologyofthefluid.ThechallengeistoobtainmaximumdisplacementoftheBREAKERintotheannulus,andafewmethodshavebeentriedwithdifferentdegreesofsuccess.Withallmethods,the

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论