2020中考数学重点难点题型专题汇总_第1页
2020中考数学重点难点题型专题汇总_第2页
2020中考数学重点难点题型专题汇总_第3页
2020中考数学重点难点题型专题汇总_第4页
2020中考数学重点难点题型专题汇总_第5页
已阅读5页,还剩103页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020中考数学重点难点专题汇总本文档中包含大量公式,上传为网页时可能会发生公式位置错误或乱码的可能,但下载后均可正常使用,欢迎下载!1新定义型问题 12规律探究型问题 93图表信息问题 284方案设计问题 435几何综合题 566二次函数综合题 851新定义型问题【命题趋势】新定义型问题是中考数学的热点问题,一般为小题(选择题或填空题)。这种类型的问题通常不会单独考查,往往会结合初中数学中某个知识点进行命题,进而既能考查初中数学中某个知识点的掌握情况,又能考查学生的自学能力和分析问题、解决问题的能力.这种类型的问题往往与代数知识结合的比较多,所以同学们一定要重视,一般这种类型的问题难度不大,平时多注意对这种问题的训练拿下这个问题不是难事.新定义型问题是在问题中定义了初中数学中没有学过的一些新概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型.一般有三种类型问题:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.【满分技巧】一.读懂题目,搜集信息,理解本质﹕要想做好这类新定义型问题,关键在于读懂题目中所给新定义的信息,真正理解新概念的本质.题目中可能会给出很多信息,有些是无关紧要的,有些是重要的,我们一定要抓住关键词,关键信息,彻底弄懂其问题的本质,这是我们解决问题的关键所在.二.新定义型问题一般与代数知识结合较多,多关注初中数学中以下几个部分的代数知识1.实数的运算→高中的虚数的运算、数列的求和等知识.2.反比例函数,一次函数,二次函数→幂函数或指数函数3.一元一次、一元二次方程、分式方程→指数方程、三角方程等特殊方程4.物理力学→向量的运算(平行四边形法则)5.其他类型三.熟练掌握和运用数学的常用思想方法我们在解决新定义型问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决新定义的问题,比如,我们用初中所学的实数的知识结合类比和转化的数学思想方法来解决复数或者虚数的一些问题等等.所以一定要把未学的问题转化成已学的数学问题,利用现有的知识和方法,结合转化、类比等数学思想解决问题.【限时检测】(建议用时:30分钟)一、选择题1.(2019湖南省株洲市)从﹣1,1,2,4四个数中任取两个不同的数(记作ak,bk)构成一个数组MK={ak,bk}(其中k=1,2…S,且将{ak,bk}与{bk,ak}视为同一个数组),若满足:对于任意的Mi={ai,bi}和Mj={ai,bj}(i≠j,1≤i≤S,1≤j≤S)都有ai+bi≠aj+bj,则S的最大值()A.10 B.6 C.5 D.4【答案】C【解析】∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴ai+bi共有5个不同的值.又∵对于任意的Mi={ai,bi}和Mj={ai,bj}(i≠j,1≤i≤S,1≤j≤S)都有ai+bi≠aj+bj,∴S的最大值为5.故选:C.2.(2019四川省达州市)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5 B.﹣ C. D.【答案】D【解析】分析根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2019除以3,根据余数的情况确定出与a2019相同的数即可得解.∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故选:D.3.(2019广西玉林市)定义新运算:,例如:,,则的图象是A. B. C. D.【答案】D【解析】分析根据题目中的新定义,可以写出函数解析式,从而可以得到相应的函数图象,本题得以解决.,,故选:D.二、填空题4.(2019河北省)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.【答案】3x;1【解析】(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.5.(2019湖北省荆州市)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.【答案】13≤x<15【解析】依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.6.(2019湖北省十堰市)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=.【答案】﹣3或4【解析】根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.7.(2019湖北省襄阳市)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.【答案】x=1【解析】2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.8.(2019湖南省常德市)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)【答案】①②③【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;②平行四边形有一组对边平行,没有一组邻边相等,②错误;③由给出条件无法得到一组对边平行,③错误;④设点P(m,m2),则Q(m,﹣1),∴MP==,PQ=+1,∵点P在第一象限,∴m>0,∴MP=+1,∴MP=PQ,又∵MN∥PQ,∴四边形PMNQ是广义菱形.④正确;故答案为①②③;9.(2019湖南省怀化市)探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是.【答案】n﹣1【解析】由题意“分数墙”的总面积=2×+3×+4×+…+n×=n﹣1,故答案为n﹣1.10.(2019湖南省娄底市)已知点,到直线的距离可表示为,例如:点到直线的距离.据此进一步可得两条平行线和之间的距离为.【答案】【解析】当时,,即点在直线上,因为点到直线的距离为:,因为直线和平行,所以这两条平行线之间的距离为.故答案为.11.(2019湖南省湘西市)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=.【答案】6【解析】∵=(4,3),=(8,m),且∥,∴4m=3×8,∴m=6;故答案为6;12.(2019江苏省连云港市)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为.【答案】(2,4,2)【解析】根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).13.(2019山东省德州市)已知:表示不超过的最大整数.例:,.现定义:,例:,则.【答案】0.7【解析】根据题意可得:{}+{-}-{1}=-3-+2-1+1=,

故答案为:14.(2019山东省临沂市)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=.【答案】±10【解析】∵=10,∴m4=104,∴m=±10.故答案为:±1015.(2019上海市)已知,那么.【答案】0【解析】当时,.故答案为:0.16.(2019四川省遂宁市)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.【答案】7﹣i【解析】(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4+i2﹣4i=6﹣i﹣i2=6﹣i+1=7﹣i.故答案为:7﹣i.17.(2019重庆市)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【解析】当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.2规律探究型问题【命题趋势】规律探究型问题是中考数学中的常考问题,题目数量一般是一个题,各种题型都有可能出现,一般以选择题或者填空题中的压轴题形式出现,主要命题方式有数式规律、图形变化规律、点的坐标规律等。基本解题思路:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中规律,进而归纳或猜想出一般结论,最后验证结论的正确性。探索规律题可以说是每年中考的必考题,预计2020年中考数学中仍会作为选择题或填空题的压轴题来考察。所以掌握其基本的考试题型及解题技巧是非常有必要的。【满分技巧】一.从简单的情况入手﹕从简单的情况入手﹕求出前三到四个结果,探究其规律,通过归纳猜想总结正确答案二.新定义型问题一般与代数知识结合较多,多关注初中数学中以下几个部分的代数知识﹕二.关注问题中的不变量和变量﹕在探究规律的问题中,一般都会存在变量和不变量(也就是常量),我们要多关注变量,看看这些变量是如何变化的,仔细观察变量的变化与序号(一般为n)之间的关系,我们找到这个关系就找到了规律所在.三.掌握一些数学思想方法规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.【限时检测】(建议用时:30分钟)一、 选择题1.(2019贵州省毕节地区)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是()A.上方 B.右方 C.下方 D.左方【答案】C【解析】如图所示:每旋转4次一周,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选:C.2.(2019河北省)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对 B.乙的思路和他的n值都对 C.甲和丙的n值都对 D.甲、乙的思路都错,而丙的思路对【答案】B【解析】甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.3.(2019湖北省鄂州市)如图,在平面直角坐标系中,点A1、A2、A3…An在x轴上,B1、B2、B3…Bn在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…Sn.则Sn可表示为()A.22n B.22n﹣1 C.22n﹣2 D.22n﹣3【答案】D【解析】∵△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥AnBn,B1A2∥B2A3∥B3A4∥…∥BnAn+1,△A1B1A2、△A2B2A3…△AnBnAn+1都是等边三角形,∵直线y=x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OBnAn=30°,∴B2A2=OA2=2,B3A3=4,…,BnAn=2n﹣1,易得∠OB1A2=90°,…,∠OBnAn+1=90°,∴B1B2=,B2B3=2,…,BnBn+1=2n,∴S1=×1×=,S2=×2×2=2,…,Sn=×2n﹣1×2n=;故选:D.4.(2019湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点从为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点的纵坐标为A. B. C.0 D.1【答案】B【解析】点运动一个用时为秒.如图,作于,与交于点.在中,,,,,,第1秒时点运动到点,纵坐标为1;第2秒时点运动到点,纵坐标为0;第3秒时点运动到点,纵坐标为;第4秒时点运动到点,纵坐标为0;第5秒时点运动到点,纵坐标为1;,点的纵坐标以1,0,,0四个数为一个周期依次循环,,第2019秒时点的纵坐标为是.故选:B.5.(2019湖南省张家界市)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣) B.(1,0) C.(﹣,﹣) D.(0,﹣1)【答案】A【解析】∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252…余3,∴点A2019的坐标为(,﹣)故选:A.6.(2019山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是()A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)【答案】C【解析】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.7.(2019云南省)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1 B.(﹣1)nx2n﹣1 C.(﹣1)n﹣1x2n+1 D.(﹣1)nx2n+1【答案】A【解析】∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.8.(2019四川省广元市)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100 B.(3)100 C.3×4199 D.3×2395【答案】D【解析】∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OAn=2n,∴AnAn+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.9.(2019河南省)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3) B.(﹣3,10) C.(10,﹣3) D.(3,﹣10)【答案】D【解析】∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.10.(2019内蒙古赤峰市)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A.22019 B. C. D.【答案】C【解析】正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,第一次:余下面积,第二次:余下面积,第三次:余下面积,当完成第2019次操作时,余下纸片的面积为,故选:C.二、填空题11.(2019山东省泰安市)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.【答案】(2n﹣1)【解析】由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+Cn﹣1An)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:(2n﹣1),12.(2019山东省潍坊市)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为.(n为正整数)【答案】(n,eq\r(2n+1))【解析】连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,同理:A2P2==,A3P3==,……,∴P1的坐标为(1,),P2的坐标为(2,),P3的坐标为(3,),……,…按照此规律可得点Pn的坐标是(n,),即(n,eq\r(2n+1))故答案为:(n,eq\r(2n+1)).13.(2019浙江省衢州市)如图,由两个长为2,宽为1的长方形组成“7”字图形。(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第a个“7”字图形得顶点Fn-1,…,则顶点F2019的坐标为.【答案】(1)(2)(,)【解析】(1)依题意可得,CD=1,CB=2∵∠BDC+∠DBC=90°,∠OBA+∠DBC=90°∴∠BDC=∠OBA又∠DCB=∠BOA=90°∴△DCB∽△BOA∴eq\f(DC,CB)=\F(OB,OA)=\F(1,2)根据题意标好字母,如图所示依题意可得CD=1,CB=2,BA=1∴BD=EQ\R(5)由(1)知eq\f(DC,CB)=\F(OB,OA)=\F(1,2),∴OB=EQ\F(\R(5),5),OA=EQ\F(2\R(5),5)易得△OAB∽△GFA∽△HCB∴BH=EQ\F(4\R(5),5),CH=EQ\F(2\R(5),5),AG=EQ\F(3\R(5),5),FG=EQ\F(6\R(5),5)∴OH=EQ\F(4\R(5),5)+EQ\F(\R(5),5)=EQ\R(5),OG=EQ\F(3\R(5),5)+EQ\F(2\R(5),5)=EQ\R(5)∴C(EQ\F(2\R(5),5),EQ\R(5)).F(EQ\R(5),EQ\F(6\R(5),5))∴由点C到点F横坐标增加了EQ\F(3\R(5),5),纵坐标增加了EQ\F(\R(5),5),……∴,Fn(EQ\R(5)+EQ\F(3\R(5),5)n,EQ\F(6\R(5),5)+EQ\F(\R(5),5)n)∴F2019(EQ\R(5)+EQ\F(3\R(5),5)×2019,EQ\F(6\R(5),5)+EQ\F(\R(5),5)×2019)即F2019(eq\f(6062\r(5),5),405eq\r(5))14.(2019广西玉林市)如图,在矩形中,,,一发光电子开始置于边的点处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于,若发光电子与矩形的边碰撞次数经过2019次后,则它与边的碰撞次数是.【答案】672【解析】如图,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点,且每次循环它与边的碰撞有2次,,当点第2019次碰到矩形的边时为第337个循环组的第3次反弹,点的坐标为它与边的碰撞次数是次,故答案为67215.(2019四川省攀枝花市)正方形,,,按如图所示的方式放置,点,,,和点,,,分别在直线和轴上.已知点,点,则的坐标是.【答案】(47,16)【解析】由题意可知纵坐标为1,的纵坐标为2,的纵坐标为4,的纵坐标为8,,和,和,和,和的纵坐标相同,,,,,的纵坐标分别为1,2,4,8,16,根据图象得出,,,直线的解析式为,的纵坐标为16,的纵坐标为16,把代入,解得,的坐标是,故答案为.三、解答题16.(2019山东省威海市)(1)阅读理解如图,点A,B在反比例函数y=的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数y=的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1).小红通过观察反比例函数y=的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF由此得出一个关于,,,之间数量关系的命题:若n>1,则.(2)证明命题小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题.小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【解析】(1)∵AE+BG=2CF,CF>DF,AE=,BG=,DF=,∴+>.故答案为:+>.(2)方法一:∵+﹣==,∵n>1,∴n(n﹣1)(n+1)>0,∴+﹣>0,∴+>.方法二:∵=>1,∴+>.17.(2019山东省威海市)(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究探究1如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.探究2如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.【解析】(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM=AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;探究2如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴BM=CD,∴BD=BM+DM=CD+2AD;故答案为:BD=CD+2AD;(3)拓展猜想:BD=BM+DM=CD+AD;理由:如图④,∵若BC是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠BAM=∠DAC,∴△ABM∽△ACD,∴=,∴BM=CD,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴DM=AD,∴BD=BM+DM=CD+AD.故答案为:BD=CD+AD18.(2019湖南省永州市)(1)如图1,在平行四边形中,,,,将平行四边形分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图所示剪开,恰好能拼成如图所示的矩形,则的值是多少?(3)四边形是一个长为7,宽为5的矩形(面积为,若把它按如图所示的方式剪开,分成四部分,重新拼成如图所示的图形,得到一个长为9,宽为4的矩形(面积为.问:重新拼成的图形的面积为什么会增加?请说明理由.【解析】(1)如图所示:(2)依题意有,解得,(负值舍去),经检验,是原方程的解.故的值是;(3),直角三角形的斜边与直角梯形的斜腰不在一条直线上,故重新拼成的图形的面积会增加.3图表信息问题【命题趋势】图表信息题是中考常考的一种题型,题量一般1-2题,分值约10分.图表信息题是通过图象、图形及表格等形式给出问题信息,通过观察、分析、加工、处理等方式解决的一类实际问题.进而考查同学们的读图、识图的能力,以及分析问题、解决问题的能力.图表信息问题往往和“方程(组)、不等式(组)、函效、统计与概率.等知识结合考查.其中结合最多是的统计与概率,其次是函数部分.【满分技巧】一.细读图表,搜集信息,联系考点﹕由于这类问题的所有信息基本上都是在图表中呈现出来的,所以一定要仔细读懂图表,然后把图表中能搜集的信息要全部搜集出来,联系考点知识,进而得到问题的答案.解题思路:读图表→搜集信息→联系考点→分析图表→得出答案1.读图表:读图表一定要仔细.2.搜集信息:要把图表中所有与考点有关的信息全部搜集出来.3.联系考点﹕我们要能从图表中或问题中看出或猜测出出题人的意图,也就是他想考查什么知识的.4.分析图表﹕利用所学的知识,仔细分析题表的数据和信息,重点分析变化的东西.二.常见图表类问题的题目类型﹕1. 图形信息型.2. 表格信息型3. 统计图表信息型4. 函数图象信息型5. 其他类型【限时检测】(建议用时:30分钟)一、 选择题1.(2019黑龙江省大庆市)某企业月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A.月份利润的众数是130万元 B.月份利润的中位数是130万元 C.月份利润的平均数是130万元 D.月份利润的极差是40万元【答案】D【解析】、月份利润的众数是120万元;故本选项错误;、月份利润的中位数是125万元,故本选项错误;、月份利润的平均数是万元,故本选项错误;、月份利润的极差是万元,故本选项正确.故选:D.2.(2019江西省)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比 B.每天阅读30分钟以上的居民家庭孩子超过50% C.每天阅读1小时以上的居民家庭孩子占20% D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为1﹣40%=60%,超过50%,此选项正确;C.每天阅读1小时以上的居民家庭孩子占30%,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1﹣40%﹣10%﹣20%)=108°,此选项正确;故选:C.3.(2019内蒙古呼和浩特市)某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长 B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本 C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本 D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍【答案】D【解析】A、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;B、2013年至2018年,该校纸质书人均阅读量的中位数是本,正确;C、2013年至2018年,该校纸质书人均阅读量的极差是60.8﹣15.5=45.3本,正确;D、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的倍,错误;故选:D.4.(2019上海市)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是A.甲的成绩比乙稳定 B.甲的最好成绩比乙高 C.甲的成绩的平均数比乙大 D.甲的成绩的中位数比乙大【答案】A【解析】甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为,甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.5.(2019重庆市)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1【答案】D【解析】当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.6.(2019广西百色市)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是A.小黄的成绩比小韦的成绩更稳定 B.两人成绩的众数相同 C.小韦的成绩比小黄的成绩更稳定 D.两人的平均成绩不相同【答案】A【解析】,由折线统计图知,小黄的成绩波动幅度小,成绩更稳定,此选项正确,选项错误;.小韦成绩的众数为10环,小黄成绩的众数为9环,此选项错误;.小韦成绩的平均数为,小黄的平均成绩为,此选项错误;故选:A.7.(2019山东省威海市)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米 B.乙队第一天修路15米 C.乙队技术改进后每天修路35米 D.前七天甲,乙两队修路长度相等【答案】D【解析】由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.二、填空题8.(2019湖北省黄石市)根据下列统计图,回答问题:该超市10月份的水果类销售额11月份的水果类销售额(请从“>”“=”“<”中选一个填空).【答案】>【解析】10月份的水果类销售额60×20%=12(万元),11月份的水果类销售额70×15%=10.5(万元),所以10月份的水果类销售额>11月份的水果类销售额,故答案为>.9.(2019湖北省十堰市)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有人.【答案】1400【解析】∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.10.(2019湖北省随州市)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为和.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.11.(2019湖南省郴州市)某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.【答案】150【解析】这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.12.(2019江苏省泰州市)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为万元.【答案】5000【解析】该商场全年的营业额为1000÷(1﹣25%﹣35%﹣20%)=5000万元,答:该商场全年的营业额为5000万元,故答案为:5000.三、解答题13.(2019江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“月”对应扇形的圆心角度数;(2)补全条形统计图.【解析】(1)全年的总电费为:元月份所占比:,扇形统计图中“月”对应扇形的圆心角度数为:答:扇形统计图中“月”对应扇形的圆心角度数是(2)月份的电费为:元,补全的统计图如图:14.(2019江苏省徐州市)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点.甲从中山路上点出发,骑车向北匀速直行;与此同时,乙从点出发,沿北京路步行向东匀速直行.设出发时,甲、乙两人与点的距离分别为、.已知、与之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当取何值时,甲、乙两人之间的距离最短?【解析】(1)设甲、乙两人的速度分别为,,则:由图②知:或7.5时,,,解得:答:甲的速度为,乙的速度为.(2)设甲、乙之间距离为,则,当时,的最小值为144000,即的最小值为;答:当时,甲、乙两人之间的距离最短.15.(2019江西省)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表年级参加英语听力训练人数周一周二周三周四周五七年级1520a3030八年级2024263030合计3544516060(1)填空:a=;(2)根据上述统计图表完成下表中的相关统计量:年级平均训练时间的中位数参加英语听力训练人数的方差七年级2434八年级(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.【解析】(1)由题意得:a=51﹣26=25;故答案为:25;(2)按照从小到大的顺序排列为:18、25、27、30、30,∴八年级平均训练时间的中位数为:27;故答案为:27;(3)参加训练的学生人数超过一半;训练时间比较合理;(4)抽查的七、八年级共60名学生中,周一至周五训练人数的平均数为(35+44+51+60+60)=50,∴该校七、八年级共480名学生中周一至周五平均每天进行英语听力训练的人数为480×=400(人).16.(2019山东省菏泽市)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”我市某中学响应号召,鼓励师生利用课余时间广泛阅读,该校文学社发起了“读书感悟•分享”比赛活动根据参赛学生的成绩划分为A,B,C,D四个等级,并绘制了下面不完整的统计图表,根据图表中提供的信息解答下列问题;频数频率A4BCaD16b(1)求a,b的值;(2)求B等级对应扇形圆心角的度数;(3)学校要从A等级的学生中随机选取2人参加市级比赛,求A等级中的学生小明被选中参加市级比赛的概率.【答案】【解析】(1)总人数:4÷10%=40,a=40×=12,b==;(2)B的频数:40﹣4﹣12﹣16=8,B等级对应扇形圆心角的度数:×360°=72°;(3)用a表示小明,用b、c、d表示另外三名同学.则选中小明的概率是:=.17.(2019四川省巴中市)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为,众数为.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.【解析】①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.18.(2019浙江省绍兴市)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【解析】(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天.19.(2019广西玉林市)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.【解析】(1)低于80分的征文数量为,则抽到试卷的分数为低于80分的概率是,故答案为:.(2)当时,成绩是70分的人数为10人,则成绩是60分的人数(人;(3)分的人数为:(人,且80分为成绩的唯一众数,所以当70分的人数为5人时,这个班的平均数最大,最大值为:(分.20.(2019江苏省南京市)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.【解析】(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.4方案设计问题【命题趋势】方案设计问题是也是中考数学中一个热门题型,一般题量为1题,多为解答题,分值约8-10分.方案设计型问题是通过一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的知识技能和方法,通过设计或操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求半断哪个方案最优.它包括经济类方案设计、作图类方案设计、测量类方案设计等类型.方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又其有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。【满分技巧】一.方案设计型问题一般解决步骤﹕一般包括“审题——建立相应模型——应用相关知识解决问题”三个步骤.其中根据具体问题建立相应的数学模型是解决这类问题的关键.二.初中数学主要数学模型﹕1. 方程(组)模型.2.函数模型(一次函数、二次函数、反比例函数)3.不等式模型根据具体问题建立相应的数学模型,其实质就是利用相关知识解决生活实际问题,所谓建立数学模型,主要是因为实际问题中可能没有使用数学化的语言表示一些具体的量或数值,需要我们自己去建立或设出相应的符号,把生活实际问题数学化.以方便我们去利用相关数学知识解决这类问题.三.熟练掌握和运用数学的常用思想方法我们在解决任何问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决问题,我们一定要把实际问题转化成数学问题,利用现有的知识和方法,结合模型、转化、类比等数学思想解决问题.【限时检测】(建议用时:30分钟)一、 选择题1.(2019黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有A.4种 B.3种 C.2种 D.1种【答案】B【解析】设一等奖个数个,二等奖个数个,根据题意,得6x+4y=34,使方程成立的解有,,,方案一共有3种;故选:B.2.(2019黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种 B.4种 C.3种 D.2种【答案】C【解析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,1≤x<3,∵x为整数,∴x=1或2或3,∴有3种购买方案.故选:C.3.(2019湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种 B.4种 C.5种 D.9种【答案】B【解析】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.4.(2019江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种 B.4种 C.5种 D.6种【答案】D【解析】共有6种拼接法,如图所示.故选:D.5.(2019四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种 B.4种 C.5种 D.6种【答案】C【解析】设该店购进甲种商品x件,则购进乙种商品(50-x)件,

根据题意,得:,

解得:20≤x<25,

∵x为整数,

∴x=20、21、22、23、24,

∴该店进货方案有5种,

故选:C.二、作图题6.(2019四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【解析】如图所示7.(2019浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解析】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.三、解答题8.(2019贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有,两种客车可供租用,型客车每辆载客量45人,型客车每辆载客量30人.若租用4辆型客车和3辆型客车共需费用10700元;若租用3辆型客车和4辆型客车共需费用10300元.(1)求租用,两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?【解析】(1)设租用,两型客车,每辆费用分别是元、元,,解得,,答:租用,两型客车,每辆费用分别是1700元、1300元;(2)设租用型客车辆,租用型客车辆,,解得,,,,共有三种租车方案,方案一:租用型客车2辆,型客车5辆,费用为9900元,方案二:租用型客车4辆,型客车2辆,费用为9400元,方案三:租用型客车5辆,型客车1辆,费用为9800元,由上可得,方案二:租用型客车4辆,型客车2辆最省钱.9.(2019黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具个,求有多少种购买方案?(3)设学校投入资金元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【解析】(1)设购买一个甲种文具元,一个乙种文具元,由题意得:,解得,答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:,解得,是整数,,37,38,39,40.有5种购买方案;(3),,随的增大而增大,当时,(元,.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.10.(2019湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?【解析】(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.11.(2019湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?【解析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.12.(2019湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【解析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.13.(2019湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,50x=9800,x=196,∴购买甲种树苗196棵,乙种树苗352棵;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,10y≤30,∴y≤3;购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;14.(2019山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解析】(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x辆,依题意有:,解得:6>x≥4,因为x取整数,所以x=4或5,当x=4时,租车费用最低,为4×400+2×280=2160.15.(2019四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【解析】①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:eq\f(500,x+10)=\f(450,x)解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.16.(2019四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【解析】(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.17.(2019浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解析】(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤eq\f(5,4)∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.18.(2019河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的eq\f(1,3),请设计出最省钱的购买方案,并说明理由.【解析】(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥eq\f(1,3)(30﹣z),∴z≥eq\f(15,2)W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少.5几何综合题【命题趋势】几何综合题是中考数学中的重点题型,也是难点所在.几何综合题的难度都比较大,所占分值也比较重,题目数量一般有两题左右,其中一题一般为三角型、四边形综合;另一题通常为圆的综合;它们在试卷中的位置一般都在试卷偏后的位置.只所以几何综合题难度大,学生一般都感觉难做,主要是因为这种类型问题的综合性较强,涉及的知识点或者说考点较多,再加上现在比较热门的动点问题、函数问题,这就导致了几何综合题的难度再次升级,因此这种题的区分度较大.所以我们一定要重视平时多培养自己的综合运用知识的能力,从不同的角度,运用不同的知识去解决同一个问题.【满分技巧】一.熟练掌握平面几何知识﹕要想解决好有关几何综合题,首先就是要熟练掌握关于平面几何的所有知识,尤其是要重点把握三角形、特殊四边形、圆及函数、三角函数相关知识.几何综合题重点考查的是关于三角形、特殊四边形(平行四边形、矩形、菱形、正方形)、圆等相关知识.二.掌握分析问题的基本方法﹕分析法、综合法、“两头堵”法﹕1.分析法是我们最常用的解决问题的方法,也就是从问题出发,执果索因,去寻找

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论