二元一次方程组的数学教案_第1页
二元一次方程组的数学教案_第2页
二元一次方程组的数学教案_第3页
二元一次方程组的数学教案_第4页
二元一次方程组的数学教案_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程组的数学教案元一次方程教案篇一【教学目标】【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生较好的数学应用意识。【重点】二元一次方程组的含义【难点】判断一组数是不是某个二元一次方程组的解,培养学生较好的数学应用意识。【教学过程】一、引入、实物投影1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方式来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数;②、含未知数的次数是一次练习(投影)下列方程有哪些是二元一次方程+2y=1xy+x=13x-=5x2-2=3xxy=12x(y+1)=c2x-y=1x+y=0二、议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。如:2x+3y=35x+3y=8x-3y=0x+y=8三、做一做、1、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?2、X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5y=2y=3也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,y=3四、随堂练习(P103)五、小结:1、含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。六、教后感:七、自备部分元一次方程教案篇二教学目标知识与技能(1)初步理解二元一次方程和一次函数的关系;(2)掌握二元一次方程组和对应的两条直线之间的关系;(3)掌握二元一次方程组的图像解法。过程与方式(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探究学校会不同数学知识间可以互相转化的数学思想和方式;(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。情感与态度(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、益求的神。(2)在经历同一数学知识可用不同的数学方式解决的过程中,培养学生的创新意识和变式能力。教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系。教学难点数形结合和数学转化的思想意识。教学准备教具:多媒体课件、三角板。学具:铅笔、直尺、练习本、坐标纸。教学过程第一环节:设置问题情境,启发引导(5分钟,学生回答问题回首知识)内容:1、方程x+y=5的解有多少个?是这个方程的解吗?2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图像上;(2)一次函数图像上的点的坐标都适合相应的二元一次方程。第二环节自主探究方程组的解与图像之间的关系(10分钟,教师引导学生解决)内容:1、解方程组2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。(3)解二元一次方程组的方式有:代入消元法、加减消元法和图像法三种。注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。第三环节典型例题(10分钟,学生独立解决)探究方程与函数的相互转化内容:例1用作图像的方式解方程组例2如图,直线与的交点坐标是。第四环节反馈练习(10分钟,学生解决全班交流)内容:1、已知一次函数与的图像的交点为,则。2、已知一次函数与的图像都经过点A(—2,0),且与轴分别交于B,C两点,则的面积为()(A)4(B)5(C)6(D)73、求两条直线与和轴所围成的三角形面积。4、如图,两条直线与的交点坐标可以看作哪个方程组的解?第五环节课堂小结(5分钟,师生共同总结)内容:以“问题串”的形式,要求学生自主总结有关知识、方式:1、二元一次方程和一次函数的图像的关系;(1)以二元一次方程的解为坐标的点都在相应的函数图像上;(2)一次函数图像上的点的坐标都适合相应的二元一次方程。2、方程组和对应的两条直线的关系:(1)方程组的解是对应的两条直线的交点坐标;(2)两条直线的交点坐标是对应的方程组的解;3、解二元一次方程组的方式有3种:(1)代入消元法;(2)加减消元法;(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。第六环节作业布置习题7.7A组(优等生)1、2、3B组(中等生)1、2C组1、2附:板书设计六、教学反思元一次方程教案篇三一、复习引入1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。2、由上题可知一元二次方程的系数与根有着密切的关系,其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac两根之间通过什么计算才能得到更简洁的关系?二、探究新知解下列方程,并填写表格:方程x1x2x1+x2x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)练习2:写出二元一次方程y-x=10的一些解。设计说明:在讲解解的问题中有三个关键点:1、二元一次方程的解有无数个;2、每一个解由x和y这一对相互制约的值组成;3、解的书写格式。并通过练习反馈掌握情况。5.2结合实验,引导学生设计问题并发现方程组。5.2.1二元一次方程组的定义周长为40cm的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10cm。此时长y宽x需要同时满足x+y=20和y-x=10,怎么在书写上体现“同时”呢?x+y=20前面加上,请学生给y-x=10命名。(二元一次方程组)并给出定义像这样,把两个二元一次方程合在一起就组成了二元一次方程组。设计说明:仍通过原来的实验,自然引出二元一次方程组。练习3:下列方程组中是二元一次方程组的有(1)(2)(3)(4)学生分析前三个,对第(4)个展开讨论把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)练习4:判断下列方程组是否是二元一次方程组:x=2x+y=5y=-12y-3z=1设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。5.2.2二元一次方程组的解研究方程组x+y=20的解。y-x=10在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦,下课前告诉学生有快速求解的方式。设计意图:激发学生的好奇心和探究欲望。5.3学会小结,引导学生在小结巩固中更好的理解概念。至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15cm,宽5cm。在解决这个问题的过程学校了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。练习5:方程组的解是()(强调公共解)练习6:写一个解为的二元一次方程。变:写一个解为的二元一次方程组。练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。设计说明:练习5巩固二元一次方程组的解的定义;练习6锻炼学生逆向思维的能力;练习7由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。5.4课后作业:必做题:94页练习、95页1、2。选做题:95页综合运用3、4;探究解二元一次方程组的方式。六、教学评价设计考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。元一次方程组教学设计篇九教学目标1.认识二元一次方程和二元一次方程组。2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组打下基础。二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。把两个二元一次方程合在一起,就组成了一个二元一次方程组。提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组。探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。满足方程2x+y=16且符合问题的实际意义的x、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解。思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探究,阅历归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。四、例题讲解例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。例2、暴风雨即将来临,一群蚂蚁正忙着搬家。其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有100只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?例3、学生思考,试着解答,最后共同宣布答案。设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。五、随堂练习1.下列方程中,是二元一次方程的是()A.3x-2y=4zB.6xy+9=0C.+4y=6D.4x=2.下列方程组中,是二元一次方程组的是()A.B.C.D.3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为()A.-2B.2或-2C.2D.以上答案都不对4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是()A、B、C、D、5.二元一次方程组的解为()A.B.C.D.6、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识六、拓展延伸1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.2.甲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论