新能源汽车零部件行业市场需求与投资规划_第1页
新能源汽车零部件行业市场需求与投资规划_第2页
新能源汽车零部件行业市场需求与投资规划_第3页
新能源汽车零部件行业市场需求与投资规划_第4页
新能源汽车零部件行业市场需求与投资规划_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新能源汽车零部件行业市场需求与投资规划供给端:续航和动力性能改善驱动新能源汽车渗透率向上上游电池厂商技术革新,纯电车型续航里程有望持续提升。受充电设施和充电速度、冬天续航里程大幅缩减等因素影响,纯电车型的续航焦虑一直是影响消费者购买的核心痛点。2022年上半年特斯拉4680圆柱电池、宁德时代CTP3.0麒麟叠片电池相继推出,相较于传统的特斯拉2170圆柱电池、比亚迪刀片电池,新电池电芯密度持续提升;4680圆柱电池相较于上一代2170电池续航提升里程16%,ModelS续航有里程有望从650公里提升至750公里左右,宁德时代CTP3.0麒麟电池续航里程突破1000公里。未来随着电芯能量密度提升、4C快充性能的成熟,纯电车型续航里程问题有望持续改善。混动车型提供两套动力系统,给消费者带来零焦虑体验。混动车型采用油+电两套动力系统,在馈电状态下甚至充电不便情况下也可以依靠纯燃油行驶,较好地解决了当前纯电续航里程焦虑短板。长城WEY牌玛奇朵DHTPHEV车型续航达到1246公里,比亚迪秦PlusDM-i车型续航可以达到1383公里,混动车型成为当前燃油车向新能源汽车转型的关键。自主品牌弯道超车,全新混动系统助力混动车型油耗性和动力性大幅改善。2020年自长城汽车发布柠檬DHT混动平台后,国内头部自主车企比亚迪、吉利、长安相继发布了新一代混动系统对标日系合资车企。在油耗性方面,新一代混动技术最大程度优化机电耦合效率,拓展发动机和电动机在高效工作区内运行的比例,充分提升燃油与电池能量利用率,当前全新一代混动车型在NEDC工况下油耗降低显著,长城WEY玛奇朵DHT-PHEV车型NEDC综合油耗仅为0.8L/100km,远低于燃油车竞品车型油耗。在动力性能方面,自主车企混动系统双电机DHT混动采用2-3档变速箱,动力性能和平顺性相较于燃油车更优,玛奇朵DHT-PHEV车型百米加速度7.2s,动力性能优势更加显著。格局变迁:智能电动时代,国产厂商迎来发展新机遇全球热管理市场主要划分两大阵营。由于传统燃油车热管理系统架构长期稳定,当前全球汽车热管理市场主要分为两大阵营:(1)前期经过一系列并购整合逐步形成寡头的海外巨头,如日本电装、法国法雷奥等全球知名零部件配套商;(2)搭乘新能源汽车东风进行业务转型的国内零部件供应商,如三花智控、银轮股份等。新能源汽车热管理技术趋势乘用车行业普遍认为空调会占到整车能耗的10-20%,而在新能源车上这个比例会更高。而在空调制热系统方面,传统汽车与新能源汽车差异较大,新能源汽车无法利用发动机余热,一般使用PTC加热器或热泵系统进行制热。但常用的PTC加热器耗电量较大,导致汽车的行驶里程大幅下降,因此制热效率较高的热泵系统将成为新能源汽车空调的发展方向。新能源车电池系统对于工作环境的温度要求更加严格,过高或过低的环境温度将显著影响车辆的续航里程以及电池寿命。而目前新能源乘用车广泛采用电池液体冷却技术,如特斯拉和宝马i3新能源车。液冷技术通过液体对流换热方式将电池产生的热量带走,液体换热系数高、热容量大、冷却速度快,对降低最高温度、保持电池组温度一致性效果更好,相较于风冷液冷方案更易实现余热回收。相关调研数据显示,2017年我国量产的PHEV已经100%采用了电池液冷方案,而纯电动车仅仅只有6%采用液冷,2018年预计纯电动车液冷的普及率会超过60%。电机冷却方面,新能源汽车和传统燃油车也存在着一定的差异。而未来随着智能化程度的提升,新能源车装载的电子部件数量和种类更加繁多,从功率只有几十瓦的LED芯片到几百千瓦的动力电子都有应用。液冷将是高功率电子部件的主要冷却方案,而低功率电子部件的散热需要创新的低成本风冷方案。伴随着新的热管理技术的出现,需要对应不同功能开发新的换热器,这也意味着热交换器数量会不断增加,这给相关行业将带来较大增长空间。2025新能源车热管理市场规模预测2025年国内新能源车热管理市场规模将达700亿元,到2030年市场规模还将提升至1114亿元,占全球的58.5%。在电动车的热管理系统中,电动压缩机是核心部件,对电驱动系统的温度控制有重要作用。同时,其单车价值量也较高。在电压平台升级的趋势下,热管理系统的作用更加明显,对核心部件的要求也更高。车热管理行业随着电动化进程,单车价值量逐步提高。国内外新能源汽车市场潜力巨大,汽车热管理产品的市场需求也将随之大幅提升,该行业将充分享受电动化进程中的红利。新能源汽车热管理量价齐升,热管理市场高成长空间由于新增三电热管理、乘员舱制热,新能源汽车热管理系统较传统燃油车更加复杂。按照模块来划分,新能源汽车热管理系统主要包括动力电池热管理、乘员舱热管理、电机电控热管理(电驱动及电子功率件热管理)三大模块。其中,动力电池热管理是全新增量,锂电池最佳工作温度范围在20-30℃,温度过低会影响电池活性,影响汽车续航能力;温度过高会导致电池安全问题。乘员舱热管理方面,传统燃油车乘员舱制热采用发动机余热方案,新能源汽车的空调制热系统则主要来自PTC(正温度系数热敏电阻)或热泵空调。另外,随着电动车电机功率、扭矩以及转速的提升,电机电控热管理的需求也逐步提高。电动汽车热管理技术发展历程整车热管理是电动汽车发展的核心技术之一,涉及乘员舱温湿环境调控、动力系统温控、玻璃防雾除雾等多目标管理。根据热管理系统架构与集成化程度,将电动汽车热管理的发展归纳为三个阶段,从单冷配合电加热到热泵配合电辅热再到宽温区热泵与整车热管理逐步耦合,电动汽车整车热管理技术逐渐朝着高度集成化、智能化的方向发展,并且在宽温区、极端条件下的环境适应性能力逐渐提升。在电动汽车产业化起步阶段,基本是以电池、电机等动力系统的替代为核心技术发展起来的,车室空调、车窗除雾、动力部件温控等辅助系统是在传统燃油汽车热管理技术基础上逐步改进而来的。纯电动汽车空调与燃油汽车空调都是通过蒸气压缩循环来实现制冷功能,两者的区别是燃油汽车空调压缩机由发动机通过皮带间接驱动,而纯电动车则直接使用电驱动压缩机来驱动制冷循环。燃油汽车冬季制热时直接利用发动机余热对乘员舱进行供热,不需要额外的热源,而纯电动车的电机余热无法满足冬季制热的需求,因此冬季制热是纯电动汽车需要解决的问题。正温度系数加热器(positivetemperaturecoefficient,PTC)由PTC陶瓷发热元件与铝管组成,具有热阻小、传热效率高的优点,并且在燃油汽车的车身基础上改动较小,因此早期的电动汽车采用蒸气压缩制冷循环制冷加PTC制热的方式来实现乘员舱的热管理,例如早期三菱公司的i-MIEV电动汽车。与燃油汽车由燃料提供能量不同,电动汽车由动力电池提供能量。电动汽车正常运行时,动力电池放电产热,温度升高,需要对电池进行降温。电池冷却的方法主要有空气冷却、液体冷却、相变材料冷却、热管冷却,由于空气冷却结构简单、成本低、便于维护,在早期的电动车上得到广泛应用。这一阶段的热管理主要形式是各个独立的子系统分别满足热管理的需求。在实际使用过程中电动汽车冬季供热能耗需求较高,从热力学角度来说PTC制热的COP始终小于1,使得PTC供热耗电量较高,能源利用率低,严重制约了电动汽车的行驶里程。而热泵技术利用蒸气压缩循环将环境中的低品位热量进行利用,制热时的理论COP大于1,因此使用热泵系统代替PTC可以增加电动汽车制热工况下的续航里程。宝马i3车型采用热泵系统来实现冬季制热。此外,一汽奔腾与红旗、上汽荣威等也在部分车型上采用了热泵系统。然而在低温环境下,传统热泵系统制热量衰减严重,无法满足电动汽车低温环境制热需求,需要额外的加热器辅助加热,因此热泵加PTC辅热的制热方式成为电动汽车冬季低温环境下乘员舱制热的主要方式。随着动力电池容量与功率的进一步提升,动力电池运行过程的热负荷也逐渐增大,传统的空冷结构无法满足动力电池的温控需求,因此液冷成为当前电池温控的主要方式。并且,由于人体所需的舒适温度和动力电池正常工作所处的温度相近,可以通过在乘员舱热泵系统中并联换热器的方式来分别满足乘员舱与动力电池制冷的需求。通过换热器以及二次冷却间接带走动力电池的热量,电动汽车整车热管理系统集成化程度有所提高。虽然集成化程度有所提升,但这一阶段的热管理系统只对电池制冷与乘员舱制冷进行了简单整合,电池、电机余热未得到有效利用。传统热泵空调在高寒环境下制热效率低、制热量不足,制约了电动汽车的应用场景。因此,一系列提升热泵空调低温工况下性能的方法得以开发应用。通过合理增加二次换热回路,在对动力电池与电机系统进行冷却的同时,对其余热进行回收利用,以提高电动汽车在低温工况下的制热量。实验结果表明,余热回收式热泵空调与传统热泵空调相比,制热量显著提升。各热管理子系统耦合程度更深的余热回收式热泵以及集成化程度更高的整车热管理系统在特斯拉ModelY、大众ID4.CROZZ等车型上已得以应用。但当环境温度更低,且余热回收量更少时,仅通过余热回收依然无法满足低温环境下的制热量需求,仍需使用PTC加热器来弥补上述情况下制热量的不足。但随着电车整车热管理集成程度的逐渐提升,可以通过合理的增大电机发热量的方式来增加余热的回收量,从而提高热泵系统的制热量与COP,避免了PTC加热器的使用,在进一步降低热管理系统空间占用率的同时满足电动汽车在低温环境下的制热需求。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论