新能源汽车电池热管理行业发展概况和趋势_第1页
新能源汽车电池热管理行业发展概况和趋势_第2页
新能源汽车电池热管理行业发展概况和趋势_第3页
新能源汽车电池热管理行业发展概况和趋势_第4页
新能源汽车电池热管理行业发展概况和趋势_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新能源汽车电池热管理行业发展概况和趋势新能源汽车电池热管理行业发展概况和趋势(一)新能源汽车电池热管理行业概况及发展趋势新能源汽车电池热管理系统旨在调整电池温度,减小电池包内最高温度和最低温度的差异,使得动力电池保持在适宜工作的温度范围,从而确保充放电性能、电池安全性及寿命,降低新能源汽车由于电池过热导致自燃的风险。新能源汽车电池热管理系统按照冷却媒介不同主要可分为风冷、液冷和直冷三类,其中液冷是动力电池冷却的主流技术,其冷却速度快、比热容大、换热系数高,在换热能力、换热一致性等方面均有良好表现。液冷系统零部件较为复杂,主要包括电池冷却器、电子膨胀阀、电子水泵、电池阀、液冷管、液冷板等,其中液冷管、液冷板通过冷却液在液流中循环流动传递走多余热量从而实现冷却功能,是液冷系统的关键部件。随着新能源汽车逐渐朝着高能量密度和高续航的方向发展,动力电池热管理系统对温度的监测和控制需求日益提升。为达到更好的冷却效果,未来液冷管、液冷板将根据客户需求逐步提升技术要求和质量品质,在工艺难度提升的同时,单车价值量及使用量有望获得较大提升。此外,伴随着下游新能源汽车行业需求放量,新能源汽车电池热管理系统下游特定品类和型号有望实现生产的规模效应,产业链增长潜力较大。(二)合金线材行业概况及发展趋势合金线材属于合金材料产业的一个重要分支,包括硬线钢、轴承钢、弹簧钢、碳素、合金结构钢等,主要用于制造切割钢丝、轮胎子午线、轴承钢球、滚子及滚针、轿车气门及悬架簧、标准件及桥梁缆索等,较广泛应用于国家重点建设工程、汽车、工程机械、矿山及桥梁等领域。十二五至十四五期间,我国持续将新材料列入战略新兴行业,面向十四五以及更为长远的周期,战略性新兴产业将成为我国现代经济体系建设的新支柱,是破解经济社会发展不平衡、不充分难题的关键产业。合金线材方面,2021年9月,中国钢结构协会线材制品行业分会提出了线材制品行业十四五发展建议纲要,针对国产高端线材市占率、绿色生产等制定具体量化指标。新能源汽车热管理行业竞争格局从全球范围看电装、法雷奥、翰昂和马勒等多家零部件巨头的汽车热管理业务收入规模超过40亿欧元,它们的产品涉及冷却系统、空调系统、压缩机以及热泵系统等。从竞争格局来看,新能源车热管理领域国际巨头在空调系统领域仍将占据统治地位,在其他领域也在逐步布局。国际零部件巨头有望将他们在燃油车空调系统领域的统治优势延续到新能源车领域,以电动压缩机为例,电装、三电和翰昂占据了80%以上的市场份额。电机电控热管理:液冷是当前主流,油冷是未来趋势电机电控热管理当前主要采用液冷换热。新能源汽车的驱动电机及电机控制器等功率性部件在工作时仍会产生热量,通常需要主动冷却维持其性能和保障行车安全性。驱动电机冷却方案主要包括风冷、液冷及油冷,电控等相关功率件主要采取风冷或液冷的方式换热。通常将驱动电机和电控串联,通过散热器进行散热。电动化进程催化油冷成未来新趋势。现阶段由于电动汽车动力性和智能化的提升,电机散热需求较大,车企在电机热管理上有望从液冷方案向油冷方案替换。液冷系统的基本原理是用冷却液循环电机壳体内部的管道,从而带走电机的热量,然而液冷方案空气导热系数低并且内部热量传递效率并不高,不能满足汽车电动智能化发展需求;油冷系统的基本原理是用油直接灌入电机内部,同电机的转子及定子绕组进行更有效率的热交换;油冷方案能够实现冷却介质与电机热源直接接触,强化了电机散热效果。油冷电机较早应用于日系油电混合车型,由于其对电机换热效果较好,现在也逐渐应用于部分新能源车型上。电动化催生热管理系统增量零部件新能源汽车热管理涉及的零部件主要分为阀类(电子膨胀阀、水阀等)、换热器类(冷却板、冷却器、油冷器等)、泵类(电子水泵等)、电动压缩机类、管路及传感器类。(一)电池热管理相较于传统燃油车,新能源汽车热管理系统新增电池热管理系统。制冷模式下,主要采用换热板来对流经电池包的冷却液进行换热;制热模式下,主要采用PTC方式对电池包进行热管理。新增核心零部件有电池冷却器(Chiller)、电子水泵。电池冷却器是调节电池组温度的关键部件,一般采用紧凑小巧的板式换热器,并在板式换热器的流道内部设计湍流发生结构,沿流向阻断流动和温度边界层,增强入口效应,最终提高换热效率。与机械水泵由发动机经过传动装置驱动、与发动机转速成一定比例不同,电子水泵是由电力驱动,水泵转速不再直接受发动机转速影响,能够大幅降低能耗,同时满足新能源汽车更精确的温度控制需求。(二)乘员舱热管理主要是通过汽车空调系统实现制冷、供暖、通风等功能,汽车空调模块主要由压缩机、蒸发器、冷凝器、膨胀阀、储液罐、管路等零部件组成。相较于传统燃油车,由于新能源汽车动力来源的差异及热管理需求的提升,通常新能源汽车空调系统用电动压缩机替代传统压缩机、电子膨胀阀替换热力膨胀阀等核心零部件。压缩机作为空调系统的核心部件,其将低温低压的气态制冷剂压缩成高温高压的气态制冷剂,并将制冷剂送往冷凝器。涡旋式压缩机体积小、重量轻、效率高,成为目前车用电动压缩机的主要形式。相较于传统燃油车空调压缩机,新能源汽车电动压缩机由电机驱动且结构复杂,因此单车价值量提升显著。电子膨胀阀由控制器、执行器和传感器三部分组成,利用被调节参数产生的电信号,控制施加于膨胀阀上的电压或电流,进而达到调节制冷剂的目的;相较于传统的热力膨胀阀,电子膨胀阀流量控制范围大、调节精细,更适合电动车热管理精细化管控。(三)集成化部件新能源汽车热管理技术逐渐朝着高度集成化、智能化的方向发展,热管理系统耦合程度的加深提高了热管理的效率,但新增的阀件与管路使系统更为复杂,为简化管路流程,降低热管理系统空间占用率,集成化部件应运而生。特斯拉在最新的ModelY车型上首次采用了八通阀,以代替传统系统中的冗余管路和阀件;小鹏集成式水壶结构,将原本多个回路的水壶以及相应的阀件、水泵集成到一个水壶之上,大幅降低载冷剂回路的复杂程度。热管理系统功能复杂,推动向集成化方向发展为提高新能源汽车冬季续航,整车厂逐步提高热管理系统效率。如利用电机电控余热来实现对电池系统的加热需求,降低了高耗能PTC的使用,提高冬季续航里程。驾驶舱制热逐渐升级为热泵空调,进一步加大热管理系统的复杂程度。为提高整个系统的可靠性、空间利用率、效率、并降低成本,热管理系统逐步向集成化方向发展。国内热管理企业由于起步较晚,竞争环境较为激烈,主要通过提供热管理系统中某个零部件的方式,为整车厂进行供货。但伴随着国内更多新势力品牌的诞生,给国内热管理零部件供应商提供了更多尝试的机会,使其在技术经验方面逐渐积累,向汽车热管理集成供应商转变。新能源促消费举措叠加双积分趋严驱动电动汽车放量国家层面,新能源汽车促消费政策多点开花。2022年5月商务部等4部门发布《四部门关于开展2022年新能源汽车下乡活动的通知》,在山西、河南、湖北等省份选择三四线城市组织开展新一轮新能源汽车下乡活动。2022年7月商务部等17部门发布《关于搞好汽车流通扩大汽车消费的若干措施》,政策从6个方面、12条措施持续巩固汽车消费回稳态势,促进汽车市场转型升级,相关措施聚焦新能源汽车购置税减免及免征税政策延续、汽车下乡等问题,预计拉动新能源汽车渗透率进一步提升。2022年7月,国常会明确提出延续免征新能源汽车购置税,有望为新能源市场持续增添新动能。2025新能源车热管理市场规模预测2025年国内新能源车热管理市场规模将达700亿元,到2030年市场规模还将提升至1114亿元,占全球的58.5%。在电动车的热管理系统中,电动压缩机是核心部件,对电驱动系统的温度控制有重要作用。同时,其单车价值量也较高。在电压平台升级的趋势下,热管理系统的作用更加明显,对核心部件的要求也更高。车热管理行业随着电动化进程,单车价值量逐步提高。国内外新能源汽车市场潜力巨大,汽车热管理产品的市场需求也将随之大幅提升,该行业将充分享受电动化进程中的红利。新能源汽车热管理量价齐升,热管理市场高成长空间由于新增三电热管理、乘员舱制热,新能源汽车热管理系统较传统燃油车更加复杂。按照模块来划分,新能源汽车热管理系统主要包括动力电池热管理、乘员舱热管理、电机电控热管理(电驱动及电子功率件热管理)三大模块。其中,动力电池热管理是全新增量,锂电池最佳工作温度范围在20-30℃,温度过低会影响电池活性,影响汽车续航能力;温度过高会导致电池安全问题。乘员舱热管理方面,传统燃油车乘员舱制热采用发动机余热方案,新能源汽车的空调制热系统则主要来自PTC(正温度系数热敏电阻)或热泵空调。另外,随着电动车电机功率、扭矩以及转速的提升,电机电控热管理的需求也逐步提高。新能源汽车热管理技术趋势乘用车行业普遍认为空调会占到整车能耗的10-20%,而在新能源车上这个比例会更高。而在空调制热系统方面,传统汽车与新能源汽车差异较大,新能源汽车无法利用发动机余热,一般使用PTC加热器或热泵系统进行制热。但常用的PTC加热器耗电量较大,导致汽车的行驶里程大幅下降,因此制热效率较高的热泵系统将成为新能源汽车空调的发展方向。新能源车电池系统对于工作环境的温度要求更加严格,过高或过低的环境温度将显著影响车辆的续航里程以及电池寿命。而目前新能源乘用车广泛采用电池液体冷却技术,如特斯拉和宝马i3新能源车。液冷技术通过液体对流换热方式将电池产生的热量带走,液体换热系数高、热容量大、冷却速度快,对降低最高温度、保持电池组温度一致性效果更好,相较于风冷液冷方案更易实现余热回收。相关调研数据显示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论