赋能数字经济:人工智能在金融行业的机遇和风险_第1页
赋能数字经济:人工智能在金融行业的机遇和风险_第2页
赋能数字经济:人工智能在金融行业的机遇和风险_第3页
赋能数字经济:人工智能在金融行业的机遇和风险_第4页
赋能数字经济:人工智能在金融行业的机遇和风险_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MONEYANDCAPITALMARKETSAND

INFORMATIONTECHNOLOGYDEPARTMENTS

PoweringtheDigital

Economy

OpportunitiesandRisksofArtificial

IntelligenceinFinance

PreparedbyElBachirBoukherouaaandGhiathShabsigh

incollaborationwith

KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,

AlinT.Mirestean,andRangacharyRavikumar

DP/2021/024

2021

OCTOBER

MONEYANDCAPITALMARKETSANDINFORMATIONTECHNOLOGYDEPARTMENTS

DEPARTMENTALPAPERS

PoweringtheDigitalEconomy

OpportunitiesandRisksofArtificialIntelligencein

Finance

PreparedbyElBachirBoukherouaaandGhiathShabsigh

incollaborationwith

KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar

Copyright©2021InternationalMonetaryFund

PoweringtheDigitalEconomy:OpportunitiesandRisksofArtificialIntelligenceinFinance

DP/2021/024

Authors:ElBachirBoukherouaaandGhiathShabsigh

incollaborationwith

KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar

1

Cataloging-in-PublicationData

IMFLibrary

Names:Boukherouaa,ElBachir.|Shabsigh,Ghiath.|AlAjmi,Khaled.|Deodoro,Jose.|Farias,Aquiles.|Iskender,EbruS.|Mirestean,Alin.|Ravikumar,Rangachary.|InternationalMonetaryFund,publisher.

Title:Poweringthedigitaleconomy:opportunitiesandrisksofartificialintelligenceinfinance/preparedbyElBachirBoukherouaaandGhiathShabsighincollaborationwithKhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar.

Description:Washington,DC:InternationalMonetaryFund,2021.|2021September.|Departmentalpaperseries.|Includesbibliographicalreferences.

Identifiers:ISBN9781589063952(paper)

Subjects:LCSH:Artificialintelligence—Economicaspects.|Machinelearning—Economicaspects.|Financialservicesindustry—Technologicalinnovations.

Classification:LCCHC79.I55B682021

ISBN

978-1-59806-395-2(Paper)

JELClassificationNumbers:

C40,C510,C550,E17,G21,G23,G280,O310,O330

Keywords:

ArtificialIntelligence,MachineLearning,FinancialStability,EmbeddedBias,FinancialRegulation,Cybersecurity,RiskManagement,DataPrivacy

Author’sE-MailAddress:

GShabsigh@;EBoukherouaa@;KAlAjmi@;JDeodoro@;AFarias@;ESonbulIskender@;AMirestean@;RRavikumar@

TheDepartmentalPaperSeriespresentsresearchbyIMFstaffonissuesofbroadregionalorcross-countryinterest.Theviewsexpressedinthispaperarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.

Publicationordersmaybeplacedonlineorthroughthemail:

InternationalMonetaryFund,PublicationServices

P.O.Box92780,Washington,DC20090,USA

T.+(1)202.623.7430

publications@

IMF

elibrary.IMF.org

1WearegratefultoAdityaNarainandotherIMFcolleaguesforvaluablecomments,andtoJavierChangforproductionsupport.

1IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

ExecutiveSummary

Thispaperdiscussestheimpactoftherapidadoptionofartificialintelligence(AI)andmachinelearning(ML)inthefinancialsector.Ithighlightsthebenefitsthesetechnologiesbringintermsoffinancialdeepeningandefficiency,whileraisingconcernsaboutitspotentialinwideningthedigitaldividebetweenadvancedanddevelopingeconomies.Thepaperadvancesthediscussionontheimpactofthistechnologybydistillingandcategorizingtheuniquerisksthatitcouldposetotheintegrityandstabilityofthefinancialsystem,policychallenges,andpotentialregulatoryapproaches.Theevolvingnatureofthistechnologyanditsapplicationinfinancemeansthatthefullextentofitsstrengthsandweaknessesisyettobefullyunderstood.Giventheriskofunexpectedpitfalls,countrieswillneedtostrengthenprudentialoversight.

AIandMLaretechnologieswiththepotentialforenormoussocietalandeconomicimpact,bringingnewopportunitiesandbenefits.Recenttechnologicaladvancesincomputinganddatastoragepower,bigdata,andthedigitaleconomyarefacilitatingrapidAI/MLdeploymentinawiderangeofsectors,includingfinance.TheCOVID-19crisishasacceleratedtheadoptionofthesesystemsduetotheincreaseduseofdigitalchannels.

AI/MLsystemsarechangingthefinancialsectorlandscape.CompetitivepressuresarefuelingrapidadoptionofAI/MLinthefinancialsectorbyfacilitatinggainsinefficiencyandcostsavings,reshapingclientinterfaces,enhancingforecastingaccuracy,andimprovingriskmanagementandcompliance.AI/MLsystemsalsoofferthepotentialtostrengthenprudentialoversightandtoequipcentralbankswithnewtoolstopursuetheirmonetaryandmacroprudentialmandates.

Theseadvances,however,arecreatingnewconcernsarisingfromrisksinherentinthetechnologyanditsapplicationinthefinancialsector.Concernsincludeanumberofissues,suchasembeddedbiasinAI/MLsystems,theopaquenessoftheiroutcomes,andtheirrobustness(particularlywithrespecttocyberthreatsandprivacy).Furthermore,thetechnologyisbringingnewsourcesandtransmissionchannelsofsystemicrisks,includinggreaterhomogeneityinriskassessmentsandcreditdecisionsandrisinginterconnectednessthatcouldquicklyamplifyshocks.

AI/MLinfinanceshouldbebroadlywelcome,togetherwithpreparationstocapturetheirbenefitsandmitigatepotentialriskstothefinancialsystem’sintegrityandsafety.Preparationsincludestrengtheningthecapacityandmonitoringframeworksofoversightauthorities,engagingstakeholderstoidentifypossiblerisksandremedialregulatoryactions,updatingrelevantlegalandregulatory,andexpandingconsumereducation.ItisimportantthattheseactionsaretakeninthecontextofnationalAIstrategiesandinvolveallrelevantpublicandprivatebodies.

Cooperationandknowledgesharingattheregionalandinternationallevelisbecomingincreasinglyimportant.ThiswouldallowforthecoordinationofactionstosupportthesafedeploymentofAI/MLsystemsandthesharingofexperiencesandknowledge.Cooperationwillbeparticularlyimportanttoensurethatless-developedeconomiessharethebenefits.

2IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

Contents

ExecutiveSummary1

AcronymsandAbbreviations

4

1.Introduction

5

2.ArtificialintelligenceintheFinancialSector

7

A.Forecasting

7

B.InvestmentandBankingServices

7

C.RiskandComplianceManagement

9

D.PrudentialSupervision

9

E.CentralBanking

12

3.RisksandPolicyConsiderations

14

A.EmbeddedBias

14

B.Unboxingthe“BlackBox”:ExplainabilityandComplexity

15

C.Cybersecurity

16

D.DataPrivacy

17

E.Robustness

17

F.ImpactonFinancialStability

18

4.Conclusion

20

Annexes

Annex1.HowMachineLearningAlgorithmsWork

21

Annex2.ArtificialIntelligenceinFinance—RiskProfile

24

Annex3.NationalArtificialIntelligenceStrategies

25

References

28

BOXES

Box1.ArtificialIntelligenceandMachineLearningCapabilities

6

Box2.ArtificialIntelligenceinInvestmentManagement—SampleUseCases

8

Box3.ArtificialIntelligenceinCreditUnderwriting

8

Box4.ArtificialIntelligenceinRegulatoryCompliance—SampleUseCases

10

Box5.ArtificialIntelligenceinSupervision—SampleApplications

11

Box6.ArtificialIntelligenceinCentralBanking—SampleApplications

13

Box7.Explainingthe"BlackBox"

16

FIGURES

Figure1.TopFiveTechnologiesEmployedinRegulatoryTechnologyOfferings

9

Figure2.TechnologiesUsedinSuprvisoryTechnologyTools

10

AnnexFigure1.1.MachineLearningParadigms

22

3IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

AnnexFigure1.2.ExampleofanInputAttack

23

AnnexFigure3.1.NationalArtificialIntelligenceStrategyLandscape

25

AnnexFigure3.2.KeyFeaturesofNationalArtificialIntelligenceStrategies

26

4IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

AcronymsandAbbreviations

AI

ArtificialIntelligence

AML/CFT

Anti-MoneyLaundering/CombatingtheFinancingofTerrorism

Fintech

FinancialTechnology

ML

MachineLearning

NLO

NaturalLanguageProcessing

OECD

OrganisationforEconomicCo-operationandDevelopment

Regtech

RegulatoryTechnology

Suptech

SupervisoryTechnology

5IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

1.Introduction

Thispaperexplorestheuseofartificialintelligence(AI)andmachinelearning(ML)inthefinancialsectorandtheresultantpolicyimplications.

1

ItprovidesanontechnicalbackgroundontheevolutionandcapabilitiesofAI/MLsystems,theirdeploymentandusecasesinthefinancialsector,andthenewchallengestheypresenttofinancialsectorpolicymakers.

AI/MLsystemshavemademajoradvancesoverthepastdecade.Althoughthedevelopmentofamachinewiththecapacitytounderstandorlearnanyintellectualtaskthatahumanbeingperformsisnotwithinimmediategrasp,today’sAIsystemscanperformquitewelltasksthatarewelldefinedandnormallyrequirehumanintelligence.Thelearningprocess,acriticalcomponentofmostAIsystems,takestheformofML,whichreliesonmathematics,statistics,anddecisiontheory.AdvancesinMLandespeciallyindeeplearningalgorithmsareresponsibleformostoftherecentachievements,suchasself-drivingcars,digitalassistants,andfacialrecognition.

2

Thefinancialsector,ledbyfinancialtechnology(fintech)companies,hasbeenrapidlyincreasingtheuseofAI/MLsystems(Box1).Recentadoptionbythefinancialsectoroftechnologicaladvances,suchasbigdataandcloudcomputing,coupledwiththeexpansionofthedigitaleconomy,madetheeffectivedeploymentofAI/MLsystemspossible.Arecentsurveyoffinancialinstitutions(WEF2020)showsthat77percentofallrespondentsanticipatethatAIwillbeofhighorveryhighoverallimportancetotheirbusinesseswithintwoyears.McKinsey(2020a)estimatesthepotentialvalueofAIinthebankingsectortoreach$1trillion.

AI/MLcapabilitiesaretransformingthefinancialsector.

3

AI/MLsystemsarereshapingclientexperiences,includingcommunicationwithfinancialserviceproviders(forexample,chatbots),investing(forexample,robo-advisor),borrowing(forexample,automatedmortgageunderwriting),andidentityverification(forexample,imagerecognition).Theyarealsotransformingtheoperationsoffinancialinstitutions,providingsignificantcostsavingsbyautomatingprocesses,usingpredictiveanalyticsforbetterproductofferings,andprovidingmoreeffectiveriskandfraudmanagementprocessesandregulatorycompliance.Finally,AI/MLsystemsprovidecentralbanksandprudentialoversightauthoritieswithnewtoolstoimprovesystemicrisksurveillanceandstrengthenprudentialoversight.

TheCOVID-19pandemichasfurtherincreasedtheappetiteforAI/MLadoptioninthefinancialsector.BoE(2020)andMcKinsey(2020b)findthataconsiderablenumberoffinancialinstitutionsexpectAI/MLtoplayabiggerroleafterthepandemic.Keygrowthareasincludecustomerrelationshipandriskmanagement.BanksareexploringwaystoleveragetheirexperienceofusingAI/MLtohandlethehighvolumeofloanapplicationsduringthepandemictoimprovetheirunderwritingprocessandfrauddetection.Similarly,supervisorsrelyingonoff-siteintensivesupervisionactivitiesduringthepandemiccouldfurtherexploreAI/ML-supportedtoolsandprocessesinthepost-pandemicera.

TherapidprogressinAI/MLdevelopmentcoulddeepenthedigitaldividebetweenadvancedanddevelopingeconomies.AI/MLdeployment,andtheresultingbenefits,havebeenconcentratedlargelyinadvancedeconomiesandafewemergingmarkets.Thesetechnologiescouldalsobringsignificantbenefitstodevelopingeconomies,includingenhancedaccesstocreditbyreducingthecostofcreditriskassessments,particularlyincountriesthatdonothaveanestablishedcreditregistry(Syandothers2019).However,theseeconomiesarefallingbehind,lacking

1FollowingtheOxfordDictionary,AIisdefinedasthetheoryanddevelopmentofsystemsabletoperformintellectualtasksthatusuallyrequirehumanintelligence.MListhelearningcomponentofanAIsystem,andisdefinedastheprocessthatusesexperience,algorithms,andsomeperformancecriteriontogetbetteratperformingaspecifiedtask.GiventhatAIandMLheavilyoverlapandthatmoststatementsinthispaperholdtrueforbothconcepts,thetermsareoftenusedasapair(AI/ML).

2SeeAnnex1formoredetails.

3Thisincludesrevenuegainsandcostsavings.

6IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

thenecessaryinvestment,accesstoresearch,andhumancapital.

4

Bridgingthisgapwillrequiredevelopingadigital-friendlypolicyframeworkanchoredaroundfourbroadpolicypillars:investingininfrastructure;investinginpoliciesforasupportivebusinessenvironment;investinginskills;andinvestinginriskmanagementframeworks(IMF2020).

Cooperationamongcountriesandbetweentheprivateandpublicsectorscouldhelpmitigatetheriskofawideningdigitaldivide.Sofar,globalinitiatives—includingthedevelopmentofprinciplestomitigateethicalrisksassociatedwithAI(UNESCO2021;OECD2019),callsforcooperationoninvestingindigitalinfrastructure(see,forexample,GoogleandInternationalFinanceCorporation(2020)),andtheprovisionofaccesstoresearchinlow-incomecountries(see,forexample,AI4G)—havebeenlimited.Multilateralorganizationscouldplayanimportantroleintransferringknowledge,raisinginvestments,buildingcapacity,andfacilitatingapeer-learningapproachtoguidedigitalpolicyeffortsindevelopingeconomies.Similarly,themembershipinseveralintergovernmentalworkinggroupsonAI(suchastheGlobalPartnershiponArtificialIntelligenceandtheOECDNetworkofExpertsonAI,amongothers)couldbeexpandedtoincludeless-developedeconomies.

AI/MLadoptioninthefinancialsectorisbringingnewuniquerisksandchallengesthatneedtobeaddressedtoensurefinancialstability.AI/ML-baseddecisionsmadebyfinancialinstitutionsmaynotbeeasilyexplainableandcouldpotentiallybebiased.AI/MLadoptionbringsinnewuniquecyberrisksandprivacyconcerns.FinancialstabilityissuescouldalsoarisewithrespecttotherobustnessoftheAI/MLalgorithmsinthefaceofstructuralshiftsandincreasedinterconnectednessthroughwidespreadrelianceonfewAI/MLserviceproviders.Chapter2explorestheadoptionofAI/MLinthefinancialsectorandpossibleassociatedrisks,Chapter3discussesrelatedpolicyconcerns,andChapter4providessomeconclusions.

Box1.ArtificialIntelligenceandMachineLearningCapabilities

•Forecasting.Machinelearningalgorithmsareusedforforecastingandbenefitfromusinglargedatasets.Theyusuallyperformbetterthantraditionalstatisticaloreconometricmodels.1Inthefinancialsector,thisisusedinsuchareasascreditriskscoring,economicandfinancialvariablesforecasting,riskmanagement,andsoon.

•Naturallanguageprocessing.Artificialintelligencesystemscancommunicatebyunderstandingandgeneratinghumanlanguage.Boostedbydeeplearningandstatisticalmodels,naturallanguageprocessinghasbeenusedinthefinancialsectorinsuchapplicationsaschatbots,contractreviewing,andreportgeneration.

•Imagerecognition.Facialandsignaturerecognitionisbeingusedbysomefinancialinstitutionsandfinancialtechnologycompaniestoassistwithcarryingoutcertainanti-moneylaundering/combatingthefinancingofterrorism(AML/CFT)requirements(forexample,theidentificationandverificationofcustomersforcustomerduediligenceprocess),andforstrengtheningsystemssecurity.

•Anomalydetection.Classificationalgorithmscanbeappliedtodetectrareitems,outliers,oranomalousdata.Inthefinancialsector,insidertrading,creditcardandinsurancefrauddetection,andAML/CFTaresomeoftheapplicationsthatleveragethiscapability(Chandola,Banerjee,andKumar2009).

4SeeAlonsoandothers(2020)forabroaderdiscussionaboutpossibleimplicationsofAIondevelopingeconomies.Inparticular,thepaperfindsthatthenewtechnologyriskswideningthegapbetweenrichandpoorcountriesbyshiftingmoreinvestmenttoadvancedeconomieswhereautomationisalreadyestablished,withnegativeconsequencesforjobsindevelopingeconomies.

7IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

2.ArtificialIntelligenceintheFinancialSector

Thecapabilityofacquiringlargesetsofdatafromtheenvironmentandprocessingitwithartificialintelligence(AI)andmachinelearning(ML)ischangingthefinancialsectorlandscape.AI/MLfacilitatesenhancedcapacitytopredicteconomic,financial,andriskevents;reshapefinancialmarkets;improveriskmanagementandcompliance;strengthenprudentialoversight;andequipcentralbankswithnewtoolstopursuetheirmonetaryandmacroprudentialmandates.

A.Forecasting

AI/MLsystemsareusedinthefinancialsectortoforecastmacro-economicandfinancialvariables,meetcustomerdemands,providepaymentcapacity,andmonitorbusinessconditions.AI/MLmodelsofferflexibilitycomparedtotraditionalstatisticalandeconometricmodels,canhelpexploreotherwisehard-to-detectrelationshipsbetweenvariables,andamplifythetoolkitsusedbyinstitutions.EvidencesuggeststhatMLmethodsoftenoutperformlinearregression-basedmethodsinforecastaccuracyandrobustness(BolhuisandRayner2020).

WhiletheuseofAI/MLinforecastingoffersbenefits,italsoposeschallenges.Useofnontraditionaldata(forexample,socialmediadata,browsinghistory,andlocationdata)inAI/MLcouldbebeneficialinfindingnewrelationshipsbetweenvariables.Similarly,byusingAInaturallanguageprocessing(NLP),unstructureddata(forexample,theinformationinemailtexts)canbebroughtintotheforecastingprocess.However,theuseofnontraditionaldatainfinancialforecastingraisesseveralconcerns,includingthegoverninglegalandregulatoryframework;ethicalandprivacyimplications;anddataqualityintermsofcleanliness,accuracy,relevancy,andpotentialbiases.

B.InvestmentandBankingServices

Inthefinancialsector,advancesinAI/MLinrecentyearshavehadtheirgreatestimpactontheinvestmentmanagementindustry.Theindustryhasusedtechnologyfordecadesintrading,clientservices,andback-officeoperations,mostlytomanagelargestreamsoftradingdataandinformationandtoexecutehigh-frequencytrading.However,AI/MLandrelatedtechnologiesarereshapingtheindustrybyintroducingnewmarketparticipants(forexample,productcustomization),improvedclientinterfaces(forexample,chatbots),betteranalyticsanddecision-makingmethods,andcost-reductionthroughautomatedprocesses(Box2).

Comparedtotheinvestmentmanagementindustry,thepenetrationofAI/MLinbankinghasbeenslower.Thebankingindustryhastraditionallybeenattheforefrontoftechnologicaladvancements(forexample,throughtheintroductionofATMs,electroniccardpayments,andonlinebanking).However,confidentialityandtheproprietarynatureofbankingdatahaveslowedAI/MLadoption.Nonetheless,AI/MLpenetrationinthebankingindustryhasacceleratedinrecentyears,inpartonaccountofrisingcompetitionfromfinancialtechnology(fintech)companies(includingfintechlenders),butalsofueledbyAI/ML’scapacitytoimproveclientrelations(forexample,throughchatbotsandAI/ML-poweredmobilebanking),productplacement(forexample,throughbehavioralandpersonalizedinsightsanalytics),back-officesupport,riskmanagement,creditunderwriting(Box3),and,importantly,costsavings.

5

5TheaggregatepotentialcostsavingsforbanksfromAI/MLsystemsisestimatedat$447billionby2023(Digalaki2021).

8IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

Box2.ArtificialIntelligenceinInvestmentManagement—SampleUseCases1

•Increasedmarketliquidityprovisionthroughawideruseofhigh-frequencyalgorithmictradingandmoreefficientmarketpriceformation.

•Expandedwealthadvisoryservicesbyprovidingpersonalandtargetedinvestmentadvicetomass-marketcustomersinacost-effectivemanner,includingforlow-incomepopulations.

•Enhancedefficiencywithartificialintelligenceandmachinelearning(AI/ML)takingonagrowingportionofinvestmentmanagementresponsibilities.

•MorecustomizedinvestmentportfoliosbasedonAI/MLtargetedcustomerexperiences.

•DevelopmentofnewreturnprofilesthroughtheuseofAI/MLinsteadofestablishedstrategies.

1SeeWEF(2018)foramoredetaileddiscussion.

Box3.ArtificialIntelligenceinCreditUnderwriting

•Artificialintelligence/machinelearning(AI/ML)predictivemodelscanhelpprocesscreditscoring,enhancinglenders’abilitytocalculatedefaultandprepaymentrisks.ResearchfindsthatMLreducesbanks’lossesondelinquentcustomersbyupto25percent(Khandani,Adlar,andLo2010).Thereisalsoevidencethat,givetheirgreateraccuracyinpredictingdefaults,automatedfinancialunderwritingsystemsbenefitunderservedapplicants,whichresultsinhigherborrowerapprovalrates(Gates,Perry,andZorn2002),asdoesthefacilitationoflow-costautomatedevaluationofsmallborrowers(Bazarbash2019).

•AI/ML-assistedunderwritingprocessesenabletheharnessingofsocial,business,location,andinternetdata,inadditiontotraditionaldatausedincreditdecisions.AI/MLreducesturnaroundtimeandincreasestheefficiencyoflendingdecisions.Evenifaclientdoesnothaveacredithistory,AI/MLcangenerateacreditscorebyanalyzingtheclient’sdigitalfootprint(socialmediaactivity,billspaymenthistory,andsearchengineactivity).AI/MLalsohasthepotentialtobeusedincommerciallendingdecisionsforriskquantificationofcommercialborrowers.1However,financialinstitutionsandsupervisorsshouldbecautiousinusingandassessingAI/MLincreditunderwritingandbuildrobustvalidationandmonitoringprocesses.

1SeeBazarbash(2019)foradiscussionofthepotentialstrengthsandweaknessesofAI/ML-basedcreditassessment.

AI/MLintroducesnewchallengesandpotentialrisks.TheuseofAI/MLininvestmentandbankingdependsontheavailabilityoflargevolumesofgood-quality,timelydata.Withthestorageanduseoflargequantitiesofsensitivedata,dataprivacyandcybersecurityareofparamountimportance.DifficultiesinexplainingtherationaleofAI/ML-basedfinancialdecisionsisincreasinglyanimportantissueasAI/MLalgorithmsmayuncoverunknowncorrelationsindatasetsthatstakeholdersmaystruggletounderstandbecausetheunderlyingcausalityisunknown.Inaddition,thesemodelsmayperformpoorlyintheeventofmajorandsuddenmovementsininputdataresultinginthebreakdownofestablishedcorrelations(forexample,inresponsetoacrisis),potentiallyprovidinginaccuratedecisions,withadverseoutcomesforfinancialinstitutionsortheirclients.

9IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy

C.RiskandComplianceManagement

AI/MLadvancesinrecentyearsarechangingthescopeandroleoftechnologyinregulatorycompliance.Regulatorytechnology(regtech)

6

hasassumedgreaterimportanceinresponsetotheregulatorytighteningandrisingcompliancecostsfollowingthe2008globalfinancialcrisis.Forthemostpart,technologyhasbeenusedtodigitizecomplianceandreportingprocesses(Arner,Barberis,andBuckley2017).However,advancesinAI/MLoverthepastfewyearsarereshapingriskandcompliancemanagementbyleveragingbroadsetsofdata,ofteninrealtime,andautomatingcompliancedecisions.Thishasimprovedcompliancequalityandreducedcosts.

MaturingAI/MLtechnologyhasthepotentialto

propelfurtheradoptionofregtechinthefinancial

sector.Accordingtoarecentglobalsurvey,AI/MLis

thetoptechnologyunderconsiderationamong

regtechfirms(Schizasandothers2019;Figure1).

IncreasedadoptionofAI/MLinregtechhas

significantlyexpandeditsusecases,cuttingacross

banking,securities,insurance,andotherfinancial

services,andcoveringawidevarietyofactivities.

Theseincludeidentityverification,anti-money

laundering/combatingthefinancingofterrorism,

frauddetection,riskmanagement,stresstesting,

microprudentialandmacroprudentialreporting,as

wellasco

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论