




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MONEYANDCAPITALMARKETSAND
INFORMATIONTECHNOLOGYDEPARTMENTS
PoweringtheDigital
Economy
OpportunitiesandRisksofArtificial
IntelligenceinFinance
PreparedbyElBachirBoukherouaaandGhiathShabsigh
incollaborationwith
KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,
AlinT.Mirestean,andRangacharyRavikumar
DP/2021/024
2021
OCTOBER
MONEYANDCAPITALMARKETSANDINFORMATIONTECHNOLOGYDEPARTMENTS
DEPARTMENTALPAPERS
PoweringtheDigitalEconomy
OpportunitiesandRisksofArtificialIntelligencein
Finance
PreparedbyElBachirBoukherouaaandGhiathShabsigh
incollaborationwith
KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar
Copyright©2021InternationalMonetaryFund
PoweringtheDigitalEconomy:OpportunitiesandRisksofArtificialIntelligenceinFinance
DP/2021/024
Authors:ElBachirBoukherouaaandGhiathShabsigh
incollaborationwith
KhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar
1
Cataloging-in-PublicationData
IMFLibrary
Names:Boukherouaa,ElBachir.|Shabsigh,Ghiath.|AlAjmi,Khaled.|Deodoro,Jose.|Farias,Aquiles.|Iskender,EbruS.|Mirestean,Alin.|Ravikumar,Rangachary.|InternationalMonetaryFund,publisher.
Title:Poweringthedigitaleconomy:opportunitiesandrisksofartificialintelligenceinfinance/preparedbyElBachirBoukherouaaandGhiathShabsighincollaborationwithKhaledAlAjmi,JoseDeodoro,AquilesFarias,EbruS.Iskender,AlinT.Mirestean,andRangacharyRavikumar.
Description:Washington,DC:InternationalMonetaryFund,2021.|2021September.|Departmentalpaperseries.|Includesbibliographicalreferences.
Identifiers:ISBN9781589063952(paper)
Subjects:LCSH:Artificialintelligence—Economicaspects.|Machinelearning—Economicaspects.|Financialservicesindustry—Technologicalinnovations.
Classification:LCCHC79.I55B682021
ISBN
978-1-59806-395-2(Paper)
JELClassificationNumbers:
C40,C510,C550,E17,G21,G23,G280,O310,O330
Keywords:
ArtificialIntelligence,MachineLearning,FinancialStability,EmbeddedBias,FinancialRegulation,Cybersecurity,RiskManagement,DataPrivacy
Author’sE-MailAddress:
GShabsigh@;EBoukherouaa@;KAlAjmi@;JDeodoro@;AFarias@;ESonbulIskender@;AMirestean@;RRavikumar@
TheDepartmentalPaperSeriespresentsresearchbyIMFstaffonissuesofbroadregionalorcross-countryinterest.Theviewsexpressedinthispaperarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
Publicationordersmaybeplacedonlineorthroughthemail:
InternationalMonetaryFund,PublicationServices
P.O.Box92780,Washington,DC20090,USA
T.+(1)202.623.7430
publications@
IMF
elibrary.IMF.org
1WearegratefultoAdityaNarainandotherIMFcolleaguesforvaluablecomments,andtoJavierChangforproductionsupport.
1IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
ExecutiveSummary
Thispaperdiscussestheimpactoftherapidadoptionofartificialintelligence(AI)andmachinelearning(ML)inthefinancialsector.Ithighlightsthebenefitsthesetechnologiesbringintermsoffinancialdeepeningandefficiency,whileraisingconcernsaboutitspotentialinwideningthedigitaldividebetweenadvancedanddevelopingeconomies.Thepaperadvancesthediscussionontheimpactofthistechnologybydistillingandcategorizingtheuniquerisksthatitcouldposetotheintegrityandstabilityofthefinancialsystem,policychallenges,andpotentialregulatoryapproaches.Theevolvingnatureofthistechnologyanditsapplicationinfinancemeansthatthefullextentofitsstrengthsandweaknessesisyettobefullyunderstood.Giventheriskofunexpectedpitfalls,countrieswillneedtostrengthenprudentialoversight.
AIandMLaretechnologieswiththepotentialforenormoussocietalandeconomicimpact,bringingnewopportunitiesandbenefits.Recenttechnologicaladvancesincomputinganddatastoragepower,bigdata,andthedigitaleconomyarefacilitatingrapidAI/MLdeploymentinawiderangeofsectors,includingfinance.TheCOVID-19crisishasacceleratedtheadoptionofthesesystemsduetotheincreaseduseofdigitalchannels.
AI/MLsystemsarechangingthefinancialsectorlandscape.CompetitivepressuresarefuelingrapidadoptionofAI/MLinthefinancialsectorbyfacilitatinggainsinefficiencyandcostsavings,reshapingclientinterfaces,enhancingforecastingaccuracy,andimprovingriskmanagementandcompliance.AI/MLsystemsalsoofferthepotentialtostrengthenprudentialoversightandtoequipcentralbankswithnewtoolstopursuetheirmonetaryandmacroprudentialmandates.
Theseadvances,however,arecreatingnewconcernsarisingfromrisksinherentinthetechnologyanditsapplicationinthefinancialsector.Concernsincludeanumberofissues,suchasembeddedbiasinAI/MLsystems,theopaquenessoftheiroutcomes,andtheirrobustness(particularlywithrespecttocyberthreatsandprivacy).Furthermore,thetechnologyisbringingnewsourcesandtransmissionchannelsofsystemicrisks,includinggreaterhomogeneityinriskassessmentsandcreditdecisionsandrisinginterconnectednessthatcouldquicklyamplifyshocks.
AI/MLinfinanceshouldbebroadlywelcome,togetherwithpreparationstocapturetheirbenefitsandmitigatepotentialriskstothefinancialsystem’sintegrityandsafety.Preparationsincludestrengtheningthecapacityandmonitoringframeworksofoversightauthorities,engagingstakeholderstoidentifypossiblerisksandremedialregulatoryactions,updatingrelevantlegalandregulatory,andexpandingconsumereducation.ItisimportantthattheseactionsaretakeninthecontextofnationalAIstrategiesandinvolveallrelevantpublicandprivatebodies.
Cooperationandknowledgesharingattheregionalandinternationallevelisbecomingincreasinglyimportant.ThiswouldallowforthecoordinationofactionstosupportthesafedeploymentofAI/MLsystemsandthesharingofexperiencesandknowledge.Cooperationwillbeparticularlyimportanttoensurethatless-developedeconomiessharethebenefits.
2IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
Contents
ExecutiveSummary1
AcronymsandAbbreviations
4
1.Introduction
5
2.ArtificialintelligenceintheFinancialSector
7
A.Forecasting
7
B.InvestmentandBankingServices
7
C.RiskandComplianceManagement
9
D.PrudentialSupervision
9
E.CentralBanking
12
3.RisksandPolicyConsiderations
14
A.EmbeddedBias
14
B.Unboxingthe“BlackBox”:ExplainabilityandComplexity
15
C.Cybersecurity
16
D.DataPrivacy
17
E.Robustness
17
F.ImpactonFinancialStability
18
4.Conclusion
20
Annexes
Annex1.HowMachineLearningAlgorithmsWork
21
Annex2.ArtificialIntelligenceinFinance—RiskProfile
24
Annex3.NationalArtificialIntelligenceStrategies
25
References
28
BOXES
Box1.ArtificialIntelligenceandMachineLearningCapabilities
6
Box2.ArtificialIntelligenceinInvestmentManagement—SampleUseCases
8
Box3.ArtificialIntelligenceinCreditUnderwriting
8
Box4.ArtificialIntelligenceinRegulatoryCompliance—SampleUseCases
10
Box5.ArtificialIntelligenceinSupervision—SampleApplications
11
Box6.ArtificialIntelligenceinCentralBanking—SampleApplications
13
Box7.Explainingthe"BlackBox"
16
FIGURES
Figure1.TopFiveTechnologiesEmployedinRegulatoryTechnologyOfferings
9
Figure2.TechnologiesUsedinSuprvisoryTechnologyTools
10
AnnexFigure1.1.MachineLearningParadigms
22
3IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
AnnexFigure1.2.ExampleofanInputAttack
23
AnnexFigure3.1.NationalArtificialIntelligenceStrategyLandscape
25
AnnexFigure3.2.KeyFeaturesofNationalArtificialIntelligenceStrategies
26
4IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
AcronymsandAbbreviations
AI
ArtificialIntelligence
AML/CFT
Anti-MoneyLaundering/CombatingtheFinancingofTerrorism
Fintech
FinancialTechnology
ML
MachineLearning
NLO
NaturalLanguageProcessing
OECD
OrganisationforEconomicCo-operationandDevelopment
Regtech
RegulatoryTechnology
Suptech
SupervisoryTechnology
5IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
1.Introduction
Thispaperexplorestheuseofartificialintelligence(AI)andmachinelearning(ML)inthefinancialsectorandtheresultantpolicyimplications.
1
ItprovidesanontechnicalbackgroundontheevolutionandcapabilitiesofAI/MLsystems,theirdeploymentandusecasesinthefinancialsector,andthenewchallengestheypresenttofinancialsectorpolicymakers.
AI/MLsystemshavemademajoradvancesoverthepastdecade.Althoughthedevelopmentofamachinewiththecapacitytounderstandorlearnanyintellectualtaskthatahumanbeingperformsisnotwithinimmediategrasp,today’sAIsystemscanperformquitewelltasksthatarewelldefinedandnormallyrequirehumanintelligence.Thelearningprocess,acriticalcomponentofmostAIsystems,takestheformofML,whichreliesonmathematics,statistics,anddecisiontheory.AdvancesinMLandespeciallyindeeplearningalgorithmsareresponsibleformostoftherecentachievements,suchasself-drivingcars,digitalassistants,andfacialrecognition.
2
Thefinancialsector,ledbyfinancialtechnology(fintech)companies,hasbeenrapidlyincreasingtheuseofAI/MLsystems(Box1).Recentadoptionbythefinancialsectoroftechnologicaladvances,suchasbigdataandcloudcomputing,coupledwiththeexpansionofthedigitaleconomy,madetheeffectivedeploymentofAI/MLsystemspossible.Arecentsurveyoffinancialinstitutions(WEF2020)showsthat77percentofallrespondentsanticipatethatAIwillbeofhighorveryhighoverallimportancetotheirbusinesseswithintwoyears.McKinsey(2020a)estimatesthepotentialvalueofAIinthebankingsectortoreach$1trillion.
AI/MLcapabilitiesaretransformingthefinancialsector.
3
AI/MLsystemsarereshapingclientexperiences,includingcommunicationwithfinancialserviceproviders(forexample,chatbots),investing(forexample,robo-advisor),borrowing(forexample,automatedmortgageunderwriting),andidentityverification(forexample,imagerecognition).Theyarealsotransformingtheoperationsoffinancialinstitutions,providingsignificantcostsavingsbyautomatingprocesses,usingpredictiveanalyticsforbetterproductofferings,andprovidingmoreeffectiveriskandfraudmanagementprocessesandregulatorycompliance.Finally,AI/MLsystemsprovidecentralbanksandprudentialoversightauthoritieswithnewtoolstoimprovesystemicrisksurveillanceandstrengthenprudentialoversight.
TheCOVID-19pandemichasfurtherincreasedtheappetiteforAI/MLadoptioninthefinancialsector.BoE(2020)andMcKinsey(2020b)findthataconsiderablenumberoffinancialinstitutionsexpectAI/MLtoplayabiggerroleafterthepandemic.Keygrowthareasincludecustomerrelationshipandriskmanagement.BanksareexploringwaystoleveragetheirexperienceofusingAI/MLtohandlethehighvolumeofloanapplicationsduringthepandemictoimprovetheirunderwritingprocessandfrauddetection.Similarly,supervisorsrelyingonoff-siteintensivesupervisionactivitiesduringthepandemiccouldfurtherexploreAI/ML-supportedtoolsandprocessesinthepost-pandemicera.
TherapidprogressinAI/MLdevelopmentcoulddeepenthedigitaldividebetweenadvancedanddevelopingeconomies.AI/MLdeployment,andtheresultingbenefits,havebeenconcentratedlargelyinadvancedeconomiesandafewemergingmarkets.Thesetechnologiescouldalsobringsignificantbenefitstodevelopingeconomies,includingenhancedaccesstocreditbyreducingthecostofcreditriskassessments,particularlyincountriesthatdonothaveanestablishedcreditregistry(Syandothers2019).However,theseeconomiesarefallingbehind,lacking
1FollowingtheOxfordDictionary,AIisdefinedasthetheoryanddevelopmentofsystemsabletoperformintellectualtasksthatusuallyrequirehumanintelligence.MListhelearningcomponentofanAIsystem,andisdefinedastheprocessthatusesexperience,algorithms,andsomeperformancecriteriontogetbetteratperformingaspecifiedtask.GiventhatAIandMLheavilyoverlapandthatmoststatementsinthispaperholdtrueforbothconcepts,thetermsareoftenusedasapair(AI/ML).
2SeeAnnex1formoredetails.
3Thisincludesrevenuegainsandcostsavings.
6IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
thenecessaryinvestment,accesstoresearch,andhumancapital.
4
Bridgingthisgapwillrequiredevelopingadigital-friendlypolicyframeworkanchoredaroundfourbroadpolicypillars:investingininfrastructure;investinginpoliciesforasupportivebusinessenvironment;investinginskills;andinvestinginriskmanagementframeworks(IMF2020).
Cooperationamongcountriesandbetweentheprivateandpublicsectorscouldhelpmitigatetheriskofawideningdigitaldivide.Sofar,globalinitiatives—includingthedevelopmentofprinciplestomitigateethicalrisksassociatedwithAI(UNESCO2021;OECD2019),callsforcooperationoninvestingindigitalinfrastructure(see,forexample,GoogleandInternationalFinanceCorporation(2020)),andtheprovisionofaccesstoresearchinlow-incomecountries(see,forexample,AI4G)—havebeenlimited.Multilateralorganizationscouldplayanimportantroleintransferringknowledge,raisinginvestments,buildingcapacity,andfacilitatingapeer-learningapproachtoguidedigitalpolicyeffortsindevelopingeconomies.Similarly,themembershipinseveralintergovernmentalworkinggroupsonAI(suchastheGlobalPartnershiponArtificialIntelligenceandtheOECDNetworkofExpertsonAI,amongothers)couldbeexpandedtoincludeless-developedeconomies.
AI/MLadoptioninthefinancialsectorisbringingnewuniquerisksandchallengesthatneedtobeaddressedtoensurefinancialstability.AI/ML-baseddecisionsmadebyfinancialinstitutionsmaynotbeeasilyexplainableandcouldpotentiallybebiased.AI/MLadoptionbringsinnewuniquecyberrisksandprivacyconcerns.FinancialstabilityissuescouldalsoarisewithrespecttotherobustnessoftheAI/MLalgorithmsinthefaceofstructuralshiftsandincreasedinterconnectednessthroughwidespreadrelianceonfewAI/MLserviceproviders.Chapter2explorestheadoptionofAI/MLinthefinancialsectorandpossibleassociatedrisks,Chapter3discussesrelatedpolicyconcerns,andChapter4providessomeconclusions.
Box1.ArtificialIntelligenceandMachineLearningCapabilities
•Forecasting.Machinelearningalgorithmsareusedforforecastingandbenefitfromusinglargedatasets.Theyusuallyperformbetterthantraditionalstatisticaloreconometricmodels.1Inthefinancialsector,thisisusedinsuchareasascreditriskscoring,economicandfinancialvariablesforecasting,riskmanagement,andsoon.
•Naturallanguageprocessing.Artificialintelligencesystemscancommunicatebyunderstandingandgeneratinghumanlanguage.Boostedbydeeplearningandstatisticalmodels,naturallanguageprocessinghasbeenusedinthefinancialsectorinsuchapplicationsaschatbots,contractreviewing,andreportgeneration.
•Imagerecognition.Facialandsignaturerecognitionisbeingusedbysomefinancialinstitutionsandfinancialtechnologycompaniestoassistwithcarryingoutcertainanti-moneylaundering/combatingthefinancingofterrorism(AML/CFT)requirements(forexample,theidentificationandverificationofcustomersforcustomerduediligenceprocess),andforstrengtheningsystemssecurity.
•Anomalydetection.Classificationalgorithmscanbeappliedtodetectrareitems,outliers,oranomalousdata.Inthefinancialsector,insidertrading,creditcardandinsurancefrauddetection,andAML/CFTaresomeoftheapplicationsthatleveragethiscapability(Chandola,Banerjee,andKumar2009).
4SeeAlonsoandothers(2020)forabroaderdiscussionaboutpossibleimplicationsofAIondevelopingeconomies.Inparticular,thepaperfindsthatthenewtechnologyriskswideningthegapbetweenrichandpoorcountriesbyshiftingmoreinvestmenttoadvancedeconomieswhereautomationisalreadyestablished,withnegativeconsequencesforjobsindevelopingeconomies.
7IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
2.ArtificialIntelligenceintheFinancialSector
Thecapabilityofacquiringlargesetsofdatafromtheenvironmentandprocessingitwithartificialintelligence(AI)andmachinelearning(ML)ischangingthefinancialsectorlandscape.AI/MLfacilitatesenhancedcapacitytopredicteconomic,financial,andriskevents;reshapefinancialmarkets;improveriskmanagementandcompliance;strengthenprudentialoversight;andequipcentralbankswithnewtoolstopursuetheirmonetaryandmacroprudentialmandates.
A.Forecasting
AI/MLsystemsareusedinthefinancialsectortoforecastmacro-economicandfinancialvariables,meetcustomerdemands,providepaymentcapacity,andmonitorbusinessconditions.AI/MLmodelsofferflexibilitycomparedtotraditionalstatisticalandeconometricmodels,canhelpexploreotherwisehard-to-detectrelationshipsbetweenvariables,andamplifythetoolkitsusedbyinstitutions.EvidencesuggeststhatMLmethodsoftenoutperformlinearregression-basedmethodsinforecastaccuracyandrobustness(BolhuisandRayner2020).
WhiletheuseofAI/MLinforecastingoffersbenefits,italsoposeschallenges.Useofnontraditionaldata(forexample,socialmediadata,browsinghistory,andlocationdata)inAI/MLcouldbebeneficialinfindingnewrelationshipsbetweenvariables.Similarly,byusingAInaturallanguageprocessing(NLP),unstructureddata(forexample,theinformationinemailtexts)canbebroughtintotheforecastingprocess.However,theuseofnontraditionaldatainfinancialforecastingraisesseveralconcerns,includingthegoverninglegalandregulatoryframework;ethicalandprivacyimplications;anddataqualityintermsofcleanliness,accuracy,relevancy,andpotentialbiases.
B.InvestmentandBankingServices
Inthefinancialsector,advancesinAI/MLinrecentyearshavehadtheirgreatestimpactontheinvestmentmanagementindustry.Theindustryhasusedtechnologyfordecadesintrading,clientservices,andback-officeoperations,mostlytomanagelargestreamsoftradingdataandinformationandtoexecutehigh-frequencytrading.However,AI/MLandrelatedtechnologiesarereshapingtheindustrybyintroducingnewmarketparticipants(forexample,productcustomization),improvedclientinterfaces(forexample,chatbots),betteranalyticsanddecision-makingmethods,andcost-reductionthroughautomatedprocesses(Box2).
Comparedtotheinvestmentmanagementindustry,thepenetrationofAI/MLinbankinghasbeenslower.Thebankingindustryhastraditionallybeenattheforefrontoftechnologicaladvancements(forexample,throughtheintroductionofATMs,electroniccardpayments,andonlinebanking).However,confidentialityandtheproprietarynatureofbankingdatahaveslowedAI/MLadoption.Nonetheless,AI/MLpenetrationinthebankingindustryhasacceleratedinrecentyears,inpartonaccountofrisingcompetitionfromfinancialtechnology(fintech)companies(includingfintechlenders),butalsofueledbyAI/ML’scapacitytoimproveclientrelations(forexample,throughchatbotsandAI/ML-poweredmobilebanking),productplacement(forexample,throughbehavioralandpersonalizedinsightsanalytics),back-officesupport,riskmanagement,creditunderwriting(Box3),and,importantly,costsavings.
5
5TheaggregatepotentialcostsavingsforbanksfromAI/MLsystemsisestimatedat$447billionby2023(Digalaki2021).
8IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
Box2.ArtificialIntelligenceinInvestmentManagement—SampleUseCases1
•Increasedmarketliquidityprovisionthroughawideruseofhigh-frequencyalgorithmictradingandmoreefficientmarketpriceformation.
•Expandedwealthadvisoryservicesbyprovidingpersonalandtargetedinvestmentadvicetomass-marketcustomersinacost-effectivemanner,includingforlow-incomepopulations.
•Enhancedefficiencywithartificialintelligenceandmachinelearning(AI/ML)takingonagrowingportionofinvestmentmanagementresponsibilities.
•MorecustomizedinvestmentportfoliosbasedonAI/MLtargetedcustomerexperiences.
•DevelopmentofnewreturnprofilesthroughtheuseofAI/MLinsteadofestablishedstrategies.
1SeeWEF(2018)foramoredetaileddiscussion.
Box3.ArtificialIntelligenceinCreditUnderwriting
•Artificialintelligence/machinelearning(AI/ML)predictivemodelscanhelpprocesscreditscoring,enhancinglenders’abilitytocalculatedefaultandprepaymentrisks.ResearchfindsthatMLreducesbanks’lossesondelinquentcustomersbyupto25percent(Khandani,Adlar,andLo2010).Thereisalsoevidencethat,givetheirgreateraccuracyinpredictingdefaults,automatedfinancialunderwritingsystemsbenefitunderservedapplicants,whichresultsinhigherborrowerapprovalrates(Gates,Perry,andZorn2002),asdoesthefacilitationoflow-costautomatedevaluationofsmallborrowers(Bazarbash2019).
•AI/ML-assistedunderwritingprocessesenabletheharnessingofsocial,business,location,andinternetdata,inadditiontotraditionaldatausedincreditdecisions.AI/MLreducesturnaroundtimeandincreasestheefficiencyoflendingdecisions.Evenifaclientdoesnothaveacredithistory,AI/MLcangenerateacreditscorebyanalyzingtheclient’sdigitalfootprint(socialmediaactivity,billspaymenthistory,andsearchengineactivity).AI/MLalsohasthepotentialtobeusedincommerciallendingdecisionsforriskquantificationofcommercialborrowers.1However,financialinstitutionsandsupervisorsshouldbecautiousinusingandassessingAI/MLincreditunderwritingandbuildrobustvalidationandmonitoringprocesses.
1SeeBazarbash(2019)foradiscussionofthepotentialstrengthsandweaknessesofAI/ML-basedcreditassessment.
AI/MLintroducesnewchallengesandpotentialrisks.TheuseofAI/MLininvestmentandbankingdependsontheavailabilityoflargevolumesofgood-quality,timelydata.Withthestorageanduseoflargequantitiesofsensitivedata,dataprivacyandcybersecurityareofparamountimportance.DifficultiesinexplainingtherationaleofAI/ML-basedfinancialdecisionsisincreasinglyanimportantissueasAI/MLalgorithmsmayuncoverunknowncorrelationsindatasetsthatstakeholdersmaystruggletounderstandbecausetheunderlyingcausalityisunknown.Inaddition,thesemodelsmayperformpoorlyintheeventofmajorandsuddenmovementsininputdataresultinginthebreakdownofestablishedcorrelations(forexample,inresponsetoacrisis),potentiallyprovidinginaccuratedecisions,withadverseoutcomesforfinancialinstitutionsortheirclients.
9IMFDEPARTMENTALPAPERSPoweringtheDigitalEconomy
C.RiskandComplianceManagement
AI/MLadvancesinrecentyearsarechangingthescopeandroleoftechnologyinregulatorycompliance.Regulatorytechnology(regtech)
6
hasassumedgreaterimportanceinresponsetotheregulatorytighteningandrisingcompliancecostsfollowingthe2008globalfinancialcrisis.Forthemostpart,technologyhasbeenusedtodigitizecomplianceandreportingprocesses(Arner,Barberis,andBuckley2017).However,advancesinAI/MLoverthepastfewyearsarereshapingriskandcompliancemanagementbyleveragingbroadsetsofdata,ofteninrealtime,andautomatingcompliancedecisions.Thishasimprovedcompliancequalityandreducedcosts.
MaturingAI/MLtechnologyhasthepotentialto
propelfurtheradoptionofregtechinthefinancial
sector.Accordingtoarecentglobalsurvey,AI/MLis
thetoptechnologyunderconsiderationamong
regtechfirms(Schizasandothers2019;Figure1).
IncreasedadoptionofAI/MLinregtechhas
significantlyexpandeditsusecases,cuttingacross
banking,securities,insurance,andotherfinancial
services,andcoveringawidevarietyofactivities.
Theseincludeidentityverification,anti-money
laundering/combatingthefinancingofterrorism,
frauddetection,riskmanagement,stresstesting,
microprudentialandmacroprudentialreporting,as
wellasco
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 录放设备在智能零售顾客分析中的应用考核试卷
- Unit 8 Let's celebrate!(Integration) 教学设计 2024-2025学年译林版(2024)七年级英语上册001
- 云母制品在生物医学成像中的应用考核试卷
- 毛皮鞣制过程中的污染防治措施考核试卷
- Unit 6 Section A 3a-3c教学设计2023-2024学年人教版英语八年级下册
- 班级节能减排活动的推广与实践计划
- 光彩童年幼儿园学期班级工作计划
- 跨部门协调与沟通技巧计划
- 供水管网改造规划计划
- 备战2025广东省深圳市中考数学真题汇编《函数综合题》含答案解析
- 三八妇联法律知识讲座
- 三维动画设计与制作习题2(含答案)
- 小学尚美少年综合素质评价实施办法
- 2023煤层气测井规范
- 家校共育(全国一等奖)
- 钢筋桁架楼承板安装指导手册
- 好的心理治愈只需一次:《了凡四训》的心理学解读
- 污水处理厂项目委托运营协议
- 小蚂蚁搬家绘本故事
- 开展因私出国境管理工作的自查报告10篇
- 分子克隆及蛋白表达常见问题和对策
评论
0/150
提交评论