版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
锐角三角函数(1)课件第一页,共22页。第28章锐角三角函数第二页,共22页。ABC“斜而未倒”BC=5.2mAB=54.5m意大利的伟大科学家伽俐略,曾在斜塔的顶层做过自由落体运动的实验..α第三页,共22页。问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求ABABC分析:情境探究第四页,共22页。在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于ABC50m30mB'C'第五页,共22页。
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于
如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比
,你能得出什么结论?ABC第六页,共22页。综上可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.
一般地,当∠A
取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?结论问题第七页,共22页。
这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么与有什么关系.你能解释一下吗?探究ABCA'B'C'第八页,共22页。
请各组分别度量这两幅三角板的斜边和每个锐角所对边的长,并计算每个锐角的对边与斜边的比值你能发现什么规律吗?做一做第九页,共22页。规律(1)直角三角形中,锐角大小确定后,这个角的对边与斜边的比值随之确定;(2)直角三角形中一个锐角的度数越大,它的对边与斜边的比值越大第十页,共22页。结论ABC
a
对边(C斜边b
直角三角形的一个锐角的对边与斜边的比值为这个锐角的正弦如:∠A的正弦
sinA=∠A的对边斜边ac=即记作:sinA
第十一页,共22页。小试牛刀1、再Rt△ACB,Rt△DEF中,∠B=300,∠D=450,∠C=900,∠F=900,若AB=DE=2,(1)求∠B的对边与斜边的比值;(2)求∠A的对边与斜边的比值;(3)求∠D的对边与斜边的比值.ACBDEF第十二页,共22页。
我们利用三角板验证300、450、600角的正弦值及其变化的规律,那么对于00到900的其他锐角是否也满足这样的规律呢?想一想第十三页,共22页。小试牛刀(2)在Rt△ABC中,∠C=900,求sinA和sinB得值。BAC5
13ABC34(1)(2)第十四页,共22页。练一练已知Rt△ABC中,∠C=900。(1)若AC=4,AB=5,求sinA与sinB;(2)若AC=5,AB=12,求sinA与sinB;(3)若BC=m,AC=n,求sinB。第十五页,共22页。练一练1.判断对错:A10m6mBC1)如图(1)sinA=()
(2)sinB=()
(3)sinA=0.6m()(4)SinB=0.8()√√××sinA是一个比值(注意比的顺序),无单位;2)如图,sinA=()
×第十六页,共22页。2.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sinA的值()A.扩大100倍B.缩小C.不变D.不能确定C练一练3.如图ACB37300则sinA=______.12第十七页,共22页。练一练3.如图,在Rt△ABC中,∠C=90°,AB=13,BC=5求sinA和sinB的值.ABC513解:在Rt△ABC中,第十八页,共22页。求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值。如图,∠C=90°CD⊥AB.sinB可以由哪两条线段之比?想一想若AC=5,CD=3,求sinB的值.┌ACBD解:∵∠B=∠ACD
∴sinB=sin∠ACD在Rt△ACD中,AD=sin∠ACD=∴sinB==4第十九页,共22页。回味无穷小结拓展1.锐角三角函数定义:2.sinA是∠A的函数.ABC∠A的对边┌斜边斜边∠A的对边sinA=3.只有不断的思考,才会有新的发现;只有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 押付房屋租赁合同书
- 2024版工程竣工验收合同及相关责任分配2篇
- 苏科版2024-2025学年度八年级数学上册6.6一次函数、一元一次方程和一元一次不等式课件
- 关于梁莲2024年度离婚诉讼中精神损害赔偿的详细协议
- 河北省秦皇岛市(2024年-2025年小学五年级语文)统编版专题练习(上学期)试卷及答案
- 江西省九江市(2024年-2025年小学五年级语文)统编版专题练习(下学期)试卷及答案
- 会员协议书模板2篇
- 软件系统开发购销合同软件销售合同范本
- 美容院产品研发合作合同(2024版)
- 农业购销合同
- 精品资料(2021-2022年收藏的)申克定量给料机教程要点
- 输灰双套管安装说明
- 温暖人心的父爱——群文阅读优秀教案
- 最新办公楼物业交接表格资料
- 《危险驾驶罪》PPT课件.ppt
- 2022年2022年普通话语流音变训练
- 钳工教学中钻孔方法的改进探究
- 水轮机结构介绍(经典)
- 高处作业基本知识高处不胜寒安全不能忘
- 管道支架载荷计算
- 防火门安装施工方案
评论
0/150
提交评论