




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
InterdisciplinaryContestInofBeItKnownThatTheTeamSijiaJiangYukeZhuRuijieHeWithFacultyShuishengXidianD.ChrisArney,Contest
WasDesignatedOutstandingTinaR.Hartley,TinaR.Hartley,Head Forofficeuseonly
TeamControlC
ForofficeuseonlyMethodsofMeasuringInfluenceUsingNetworkInthispaper,webuildthenetworkmodeltomeasuretheimpactofresearchers,papersandsoon.Wefirstusethenetworkmodeltoevaluatetheimpctofresearchers,consideringresearchersasthenodes,andusingsidestodescribecollaboratonamongresearchers.Wethenproposetheconceptofimportancedegreeandinfluencedegree.Theyareallthepropertiesofnodes.Importancedegreedepictsanode’sownweightinthenetwork,whileinfluencedegreeestimatesanode’stotalnfluencethatmutualimpactamongnodesisincluded.Basedonthecomprehensiveconsiderationoftheclusteringcoefficientanddegree,weputforwardanewideatomeasureanode’simportancedegree.ThencombiningwithPageRankalgorithm,wecanevaluatetheinfluencedegreeofeverynodeinthenetwork.WecanfindALON,NOGAMisthemostinfluentialresearcher.Byyzingtheproprtiesofnodes,wefindthatforageneralresearcher,she/heshouldextenditscollaborativenetworkasgreatlyaspossible,especiallypartnerresearcherswithhighimportancedegree.Second,imitatingpreviousmethodology,webuildthemodeltoevaluatetheimpactofpapers.Weconcludethatfactorsdeterminingapaper’sinfluencecontainthreeindexes:thefirstauthor’sH-value,thejournal’sImpactFactorandcitedindexwhichistheconceptwedefinetodepicttheinfluencedegreeofapaperintheaspectofcitation.Referringtothepreviousidea,weconstructanewnetworkreflectingcitationrelationshipamongpapers,thenwecanobtainthecitedindexofeverypaper.Afterhavingcollectedthevalueofanothertwoindexes,weuseAHPtodeterminetheweightofthreefactors,andfinallyevaluatethetotalinfluenceofapapersuccessfully.WefindthatthepaperStatisticalmechanicsofcomplexnetworksismostinfluential.Afterthatweviewtheotherfieldsinsteadoftheacademicareatoextendourmodel.Weapplyournetworkmodelmeasuremoviestars’influence.WeselectagreatlyinfluentialmoviestartorecethestatusofErdös,andconstructthecooperatingnetworkamongmoviestars.Havingobtainedinfluencedegreeofstars,therankingofinfluenceofmoviestarsmaintainedahighlyconsistentwithreality.Thisisproofthatourmodelisfeasible.Thenwediscussourmodel’sapplicationforacademic,militaryandSNSfieldsroughly.Finally,wemakeasensitivity ysisforourmodel,anddiscusstheimpactofthechangingofnodesandthepapers’feedbackofcitationrelationshipontheresults.Throughprevious ysis,wecanseethatourmodelcanbeappliedtomanyfiles,soithasarelativelyhighgeneralization.. Introduction................................. Background............................... Ourwork................................ Assumptions................................. SymbolDescription............................. Theinfluenceofresearchers......................... Modelone:themeasurementofnodes’importancedegreemodelonnetworktheory................ . ...... EvaluatingtheimportanceofresearcheronlybyNodedegree Evaluatingtheimportancedegreeofresearchersusingclusteringcoefficient............ .............. Theevaluationmodelbasedontheclusteringcoefficientandgree.............. ........... Modeltwo:themeasurementofnodes’influencedegreemodelonPageRankalgorithm. . ................... AnintroductiontoPageRank ................ ThePageRankevaluationmodelbasedontheimportance ysis:someinterestingdata................. Theinfluenceof Thecitingnetworkof prehensveevaluationmodelbasedon Model Applyingmodelstoaspecific ysisofmodels ysisofthecollaborative ysisoftheciting ysisofthe 感谢作者 28747XidianUniversityICM2014OutstandingPaperAdvisior:ShuishengJiangSijia,ZhuYuke,He Copyright2014@All AllRightsPage1ofDoyoubelievethateveryoneintheworldcanestablishcontactwithanyoneelsebyonlysix satmost?EventheU.S.andtheboatmanofVenice,oncefind-ingtheright ,theycanestablishconnection.Thefamoussixdegreesofseparationtheorylsusthataslongaswefindrightmedia,wecanbuildrelationshipbetweenanytwoseeminglyunrelatedentities.Thistheoryisstillapplicableinacademia.Someresearcherscanoftencompletesomehigh-qualitypapersthroughcooperation,whichisinseparablefromthestrongre-lationsamongthem.Inthisera,interdisciplinarystudyisveryprevalent,sotheresearchcapabilityofresearchersandacademicstandardsofthepaperareaffectedbymanyas-pectsofintricateacademicnetwork.Moreandmoreattentionhasbeenpaidtohowtojudgetheacademiclevelandthequalityofpapers.PaulErd¨sisalegendarymathematician.Inhishalf-centurycareerinscientificresearch,hehadmorethan500collaboratorsandpublishedmorethan1400academicpapers.Thereisnodoubtthatheisoneofthemosinfluntialfoundersinthestudyofinterdisciplinary.Peoplecanevendefineaconceptcalled”collaborativedistance”,andErd¨Erd¨Erd¨s2representstheresearcherswhohaddirectcooperationwithErd¨s1,andsoon.TostudytheinfluenceofresearcherswhohaddirectcooperationwithErd¨s(theswhoseErdo¨snumberisone),thispassageisinspiredbyPageRankusedinsearchengineandclusteringcoefficientwhichmeasurestheimportancedegreeofeachnodeinthenetwork,andestablishnetworkmodelbasedongraphtheory.Wegiveamethodologytoevaluatetheinfluenceofresearchersandpapers,andextendthismodeltoanotheraspects.OurFirst,theinfluenceofresearchersandtheimportanceofresearchersarebotharela-tivelyvagueconcept.Inordertogetaclearpictureoftheproblem,wethinkthatthreefactorsshouldbetakenintoconsiderationtomeasuretheinfluenceofoneresearcher:Theresearcher’sextensivedegreeinthefieldofcooperation,namelythenumberofpartners.Thetimesofcooperationwithotherresearcherswhohavestronginfluence.Inthispaper,itisthetimesofcooperationwithErdo¨s.
28747XidianUniversityICM2014OutstandingPaperAdvisior:ShuishengJiangSijia,ZhuYuke,HeRuijie
Page2ofTheacademiclevelofpartnerswhocooperatewiththeThemeasureoftheimportanceofaresearchpapershouldcontainthefollowingTheauthor’sinfluenceoftheresearchpaper’s,wecanmeasureitbyH-Thepopularityofthejournalwhichhavepublishedthisresearchpaper,wecanusethejournal’sImpactFactor(IF)toexpress.ThenumberofcitationbyotherOnthebasisofabovediscussion,toevaluatetheinfluenceofresearchersandresearcherpaper,andtopromoteittobeappliedintheactual,wemayboildownthetaskstothefollowingfourquestions:Bylimitingthesizeofnetworkandextractingthedata,buildacoauthornetworkofthe511researchersfromthefileErdos1andyzethepropertiesofthisnet-thenetwork,andthendoevaluationandrankingforthem.(Erdo¨sisnottheretoytheseroles.)Changetheobjectofstudyanddesignamodeltoevaluatethesignificanceofresearcherpaper.Considerhowyouwouldmeasuretherole,influence,orimpactofaspecificuniversity,department,orajournalinnetworkscience?Dorankingfortheimportanceofresearchpaperandcomparethedifferencebetweenthesetwomethodology.Collectdata,andextendpreviousmodelsandalgorithmstootherfieldsintheactualtoexaminetheiradaptability.DiscussthescienceandutilityofthemodelbuiltIfapaperwascitedmorethanonceinanotherpaper,weregarditasTheimportancedegreewemeasureisforTheaveragevalueofmeasurementindexesofpapersormoviestarscanreflecttheircurrentimpact.ThenumberofcooperationwithErd¨scanaffectaresearchersinfluencedegree,butwhenthenumberexceedacertainvalue,theaffectionwouldbetendtobeaTosomedegree,thequalityofonepaperisproportionaltothenumbercitedbyotherpapers. 28747XidianUniversityICM2014OutstandingPaperAdvisior:ShuishengZhouTeam# JiangSijia,ZhuYuke,HeRuijiePage3ofCopyright2014@AllRightsAllSymbolInthesection,weusesomesymbolsforconstructingthemodelas Theresearcherisimportancedegreeinthe Theresearcherisinfluencedegreeinthe TheH-indexofpaperis TheImpactFactorofpaperisEDeviationDegreebetweentheoldresultsE thenewrankingresultsafterdeletingnodeP.s:OthersymbolsinstructionswillbegivenintheTheinfluenceofBeforemodeling,toavoidambiguitywewilldefinethetwoconfusingTheimportancedegreeofanode:thenode’sinfluenceinthenetwork.Itmea-suresanode’sabilitytocommunicatewithneighbournodesandtobuildthecon-nectionamongdifferentnodesinthewholeTheinfluencedegreeofanode:Duetotheconnectionwithothernodes,thenodewasaffectedbyothernodesandthereforeitpossessesitsowncomprehensiveModelone:themeasurementofnodes’importancedegreemod-elbasedonnetworktheoryInordertomeasuretheinfluencedegreeofeachresearcher,accordingtographtheo-ry,wedefinethenodesasresearchersandthesidesasthepartnershipamong.Thus,weestablishnetworkmodelwhichcanreflecttheinterrelationamongthere-searchers.Tofacilitateunderstandingandfurtherysis,wegivetheschematicdia-gramofthenetworkmodel,showninFigure1.Wecanseethatthroughsmallscopeofcooperation,researcherspromotetheconnec-tivityofthewholenetwork,andcontributetotheconnectionamongseeminglyunrelated Figure1:Thediagramwhichdescribestherelationamong10researchers
Figure2:Afterdeletingnode8,thecon-nectivityofthegraphhasbeendestroyed.Toevaluatetheimportancedegreeofeachresearcherinthenetworkmodel,wediscussitsmeasuringmethodinthefollowingsection.EvaluatingtheimportanceofresearchersonlybyNodeAssumethatnetworkG=(V;E)isundirectedandconsistsof|V|=Nnodes|expressedki=Âj2G<0, :1InFigure1,node8hasthemostnodedegree,ork8=4.Ifdeleteit,asshowninFigure2,node7,9and10 eisolated,theconnectivityofthenetworkarebadlyaffected.Incontrast,itsimpactdegreedeclinelessifthedeletednodesdegreeisless.Therefore,thetyofnodes’degreerepresentstheimportanceofresearchers.But,isthenodeswhichhavethesamenumberofdegreehavethesameWeyzeitinthefollowing,asisshowninFigure3and4Inthepicture,node2and4havethesametiesofdegree.However,deletingnode2hasnoeffectontheconnectivityofthewholenetwork.Afterdeletingnode4,node5isseparated,andnode7,8,9,10losetheconnectionwithnode1,2,3,6.Thusitcanbeseenthatthenodeswhichhavethesamenumberofdegreedonotalwayshavethesameimpactdegree.Sowecanconcludethatnodedegreerepresentsthedirectconnectingabilitywithitsneighbornode,butitcannotreflectitsinfluenceontheconnectivityofthewhole Figure3:Theconditionofconnectionafterdeletingnode2.
Figure4:Theconditionofconnectionafterdeletingnode4network.Tolookforasuitablemethodtosolvethisproblem,weintroducetheconceptofclusteringcoefficient.kAssumethedegreeofnodeiisk,thenthe umtriangleformedbythekneigh-bournodesisC2,hypothesiseeirepresentsthenumberoftriangleformedbyanytwoneighbornodes,thenclusteringcoefficient[4]canbedefinedas:kci=k
Ingraphtheory,aclusteringcoefficientisameasureofthedegreetowhichnodesinagraphtendtoclustertogetherAndinthispassage,itdescribesthecooperationdegreebetweenaresearcherandhispartners.Byyzingthenode2and4intheFigure3and4,wefindbecauseofthenodedegreeofthemareboth3,the umtriangleformedbytheirneighbournodesare33.However,intheactualsituation,thetrianglenumberofnode2is2andnode4is0,soc2=2,c4=0.Theresultindicatesthatothernodeswhichhavecooperatedwithnode4havenoconnectionwitheachother.Node4iscrucialinconnectingothernodesandismoreimportantthannode2.3However,differentfromdegreeindex,clusteringcoefficientcanreflecttheconnec-tivityofneighbournodestosomeextent,butitcannotshowthescaleofneighbournodes.Hence,weshouldevaluatetheimportanceofnodesbyconsideringnodedegreeandclusteringcoefficientsynthetically.TheevaluationmodelbasedontheclusteringcoefficientandFirst,weconsidernodeAssumefiisthesumdegreeofitselfandneighbournodesfornodei,anditcanbeexpressedas:fi=ki+Â Wherekwisthedegreeofnodew,Giisthecollectionofnodei’sneighbournode.reflectstheinformationbetweenthenode’sdegreeanditsneighbourThen,weconsiderclusteringcoefficient.Assumegibe: j=1{fj}-fgi
j}-min{}f}ffwhereciistheclusteringcoefficientofnodei.Becauseclusteringcoefficientindicatetheconnectiondegreeamongneighbournodes,butcannotreflecttheirscale,socicanfinormalized.Shownasequation(4)[5],gialsoshowclosenessamongneighbourAssumepiistheimportancedegreeofnodei,toevaluatetheimportanceofnodessynthetically,wedealwithfipandgibythechemotacticfunction[5]u(x)= ,soweÂgettheimportancedegreepi
si= Nf
Nj=1 j=1Ontheotherhand,considereveryresearcherhasdifferenttimesofdirectcooperationwithErdo¨s,andthetimescanreflecttheimportanceofresearchertosomedegree.Sotofytheindex,weuseapiecewisefunctiontosimulatetheimpactofxdirectcooperationwithErdo¨sontheresearchers’importance,itisexpressedas:8<0.002x11,0<x< 0.2,x�Therefore,thecomprehensiveimportanceofeveryresearcherqi=Pi(x)+ Inordertosimplifythecalculation,weonlystudytheco-authornetworkoftheErd¨s1authors,thenwegettheqiof511researchersandlistthetoptenresearchersasshowninTable1.(Notethatthisrankingisnottheresearcherseventuallyinfluenceranking,buttheimportanceinthenetwork.)Table1:Therankingofresearchers’importancedegreeqCooperation152HARARY,23GRAHAM,RONALDBOLLOBAS,TUZA,FUREDI,SOS,VERAPACH,Bystatistics,Erd¨shadcooperated1671tmesintotalwiththe511researchersandtheaveragenumberofcollaboraivetimeis3yzingthedataaccordingtoTable1,wefindinmostcasesthatthetoptenresearchers’importancearethosewhocooperatedwithErd¨sfrequentlyandtheirfirstcooperationisveryearly.Thereasonableexna-tionforthisphenomenonisthattheirfrequentandearlycooperationhelpthemdevelopandgrowinthecollaborativenetwork,andtheirimportanceisirreceable.Wecallthiskindofgroup”oldresercher”.late(”youngresearcher”)cannotbuildamaturenetworkrelationship.TheirimportanceForexample,ifa”youngresearcher”cancooperatedwitha”oldresearcher”,she/hemaymakeabreakthroughandimprovetheirinfluencedegree.Therefore,itisnotthefinalindextoevaluatetheinfluence.Weneedtoestablishaobjectivemodeltoevaluatetheimpactinviewofthecooperationinfluenceontheresearcher.Modeltwo:themeasurementofnodes’influencedegreemodelbasedonPageRankalgorithmownimportancedegreeandinfluencedegreedeterminedbytheircollaborativenetwork,weintroducePageRankalgorithmtodealwiththisproblem.Becauseofitspowerfulretrievalfunctionandhighqualityretrievalserviceisoneofthemostpopularsearchengines.UsingitsPageRankalgorithmtocalculatethePageRankvaluesofeachwebpage,gettherankofthewebpagebybalancingthenumberoflinkstothesearchtargetandthequalityoftheselinks.ThehigherthevalueofPageRankis,thehighertherankhas[2].ThePageRankevaluationmodelbasedontheimportanceInsection4.1,we’vegotimportantdegreeofeveryresearchers,setaijistheimpor-tancedegreeofnodeitonodej,sowecangettheadjacentmatrixamongnodesinthenetwork,weuseAtoexpress:2 ··· A=6 ···a2n Where,aij
···80,iandj<:qi,iandjdontconnect.(i,j=0,1,2,...,
Todistributetheresearcher’simportanceequallytoresearcherswhocooperated,normalizeeachlineofthematrixsetthisnewmatrixbeA¯,thentransposeA¯andgetthematrixoftransitionprobabilityW,or: AssigneachresearcheraPageRankvaluexiitshouldbedeterminedbyhis(her)partners’importancedegreeqi.Inaotherword,oneresearcher’sinfluencedegreeisproportionaltoher/hispartners’importance.Setthecommonproportionalitycoefficientbel,wecangetthefollowinglinearNÂwijxj=li,(xi=qi,i=1,2,..., LetX=(x1,x2,...,x511)Tbecolumnvectorformedbytheeffectfromotherre-searchers.Throughmatrixmultiplication,equation(4.2.2)canbeexpressedas:WX=l Thuswecanobtainthe umpositiveeigenvaluesofthetransitionprobabilitymatrixxthecorrespondingnon-negativefeaturevectorXmax=(x1,x2,...,x511)T,sowegetresearchers’impactx1,x2,...xnandultimayinfluencerankings.Weonlylisttoptenresearchers,showninTable2.p1ALON,NOGA2GRAHAM,RONALD3BOLLOBAS,04RODL,5FUREDI,06TUZA,07HARARY,8SOS,VERA9SPENCER,JOELFAUDREE,RALPHJASPER, ysis:someinterestingWealreadyknowtheresearchers’importanceindexandinfluenceindexaretwod-ifferentevaluationcrterionsofmeasuringthelevelofscientificresearchers.Theformerreflectstheresearcher’sabilitytocontributetotheconnectioninthenetworkbycontact-ingotherresearchers,whilethelattershowstheresearcherisaffectedbyherself/himselfandher/hispartnersandcanchangethesefactorsintoher/hisoverallinfluence.Comparingtherankresultofthetwomethods,wefindthatthechangeofoverresearchers’rankingiswithin75.Inviewoftheirdifferenceofemphasis,itisHowever,yzingtheremainingdata,wefindsomeinterestingphenomenon,weshowitinTable3Intheabovetable,wedefinetheareaofyellowasstabledata,theareaofgreenaspositivedataandtheareaofredasnegativedata.Stabledata:we yzethetopfiveinfluenceofresearchersandfindtheirrankingiscloselytotheirimportanceranking.WeconcludetheinfluencedegreeoftheresearcherswithlargeimportancedegreeisalsoTable3:Theschematicdiagramofresearchers’
p- 1105GRAHAM,RONALD321BOLLOBAS,532440FUREDI,752PYBER,3TETALI,PRASAD22FISHBURN,PETERTENENBAUM,7STEIN,ALAN1SMITH,PAUL1MAXSEIN,11Positivedata:Someresearchers’influencedegreerankingimprovebymorethan250thantheirimportancedegreeranking,someevenimproveby351.TheircommonfeatureistheirfirstcooperationwithErdo¨sislate,sotheircooperationnetworkcannotdevelopmaturelyandtheirimportancedegreerankingislow.However,byooperaingfrequentlywithhighinfluenceresearchers,theirinflu-encedegreecanbepromoted.TakeFISHBURN,PETERCasanexample,noton-searcherswhoseimportancedegreeishigh(FUREDI,ZOLTAN,GRAHAM,RONALDLEWISandSPENCER,JOELHAROLD),sohisinfluencedegreerankinghavegreatlyimproved.Weconcludethatevenwithlowerimportancedegreeinthenetwork,onecanenhanceitsinfluencedegreebycooperatingwithhighlyin-fluentialresearchers.Negativedata:Wefindfourresearchers’influencedegreedropmorethan100.Investigatingtheirdata,wegettheirpartnersaremorethan20,butoverhalfofthemdon’tbelongtoErdo¨s1.Theresultshowsthattheresearcherwhocooperatelessfrequentlyhavelowinfluencedegree.Sowecandrawtheconclusionthataresearchercanimprovetheirinfluencebyenhanc-ingitsowncollaborativenetwork,andtheimportancedegreeofitspartnersysTeam#
28747XidianUniversityICM2014OutstandingPaperAdvisior:ShuishengJiangSijia,ZhuYuke,He Page11ofCopyright2014@AllRightsAllimportantroleinenhancingitsTheinfluenceof
Toevaluateresearchpapers’influence,wechoose15researchpapersinandusethemethodofthesection§4.Weestablishamodelwhichreflectsthein amongresearcherpapers.Undoubtedly,thebestwaytoevaluatetheinfluencedegreeofaresearchpaperisexaminingthequalityofthecontent.However,theredoesn’texistagreatanddirectmethodforit.Therefore,weneedtolookforindexestoevaluateindirectly.By-ysis,wethinkthefactorsthataffecttheinfluencedegreeofresearchpapersismainlymanifestedintwoaspects.Externalinfluencedegree:thecitingofapaperisanimportantindextomeasureitsinfluence.Byyzingtherelationofthemutualcitingofthese15papers,wecanbuildacitingnetworksimilartomodelone,andusePageRankalgorithmtoevaluateeverypaper’sinfluencedegree.Internalinfluencedegree:Itisalsoaffectedbyitsfirstauthor’slevelofscientificresearch,namelyHindex,andtheinfluenceofthejournal,namelyImpactFactor(IF).Sowechoosetheabovethreeindexestoevaluatepapers’influenceThecitingnetworkofFirstofall,differenfromnetworkrelationshipofresearchers,oneresearchpapercanonlycitethepaperpublishedbeforeitandthereisnorelationshipofcooperationbetweenthem.Nevertheless,oncected,itindicatesthisresearchpapergetstheaffirmationfromotherresearchers.Themoretheresearcherpaperiscited,thehigherinfluenceofthisresearcherpaperwillhave.Meanwhile,thequotercanalsobenefitfromitandimprovehis(her)paperimpact.Hence,wecanestablishfeedbackrelationshiplikeresearchers.Weestablishthenetworkrelationshipgraphamongresearchpapers.Thenodesrepresentresearchpapersandthesidesrepresentthefeedbackrelationshipamongresearchpapers(weassumethattheeffectsofinctionoftwopapersexistcitingrelationareequal),shownintheFigure5.UsingthePageRankalgorithminmodeltwo,wecangettheinfluencedegreeinthenetwork,wecallitpapercitedindex,setitber,whichmeasuresitscitedinfluence.Bycollectingdatafromauthoritativewebsite(suchasSCI,Scholar),weusethenumbercitedbyothersastheindextomeasuretheimportancedegreeqofeveryTeam#
Figure5:Thecitationnetworkamong
Page12ofSettheadjacencymatrixofthenodesinthenetworkbe ··a ···A=4
·<80iandjconnectThereinto,aij=:<q,iandjdon’tNormalizeAanduseequation11),wecangetrofthese15research
prehensiveevaluationmodelbasedonrcanonlyreflecttheeffectfrometernalelement.Toevaluatearesearchpaperover-all,wearedeterminedtouseAHPandcalculatetheweightofIF,Hindexandr.Wethinkthatintheprogressofmeasuringaresearchpaper,thefirstauthorshouldn’tbeconsideredtoomuch.Exceptthat,thecontributionofinternalfactorisgreaterthanexternalfactor.Sowesetthesizeofrelationshipofthethreefactors:IF>r>H.Bythisprinciple,wegivePairwisecomparison0 r B 4 1@1 Team#
Page13ofWetheninputthematrixintoYAAHPandcalculatetheweightofeachfactor:aIF0.5469,aH=0.1085,ar=Thefinalexpressionofevaluatingonepaper’sinfluencedegreeTi=aIFIFi+aHHi+arri Inthefollowing,wetesttheconsistencyoftheAHP.TheconsistencyindexCI=lxnshouldbecloseto0;wegetCI=TheconsistencyratioCR=CIshouldbelessthan0.1;WegetCR=0.02.ourdecisionmethoddisysperfectlyacceptableconsistencyandweightsareListthetopfiveinfluencedegree,showninTableTable4:Theschematicdiagramofpaprs’ r12 24 3 4 -57 -Inthefirstthreetasks,wehavesolvedtheproblemofmeasuringtheinfluencedegreeofresearchersandpapers.Ifweareabletogetenoughinformationaboutresearchpapersandresearchers,wecancreatearesearchdatabase.Ifwewanttoevaluatetheresearchstrengthofauniversityoradepartmentinacertainfield,weneedtolookfortheresearchersandtheresearchpapersinrecentyearsofthisorganization,theninquiretheirinfluenceinthedatabase.Finallywecandeterminethestrengthofitbychoosingasuitableevaluation(suchasTOPSIS).ModelInmodeloneandmodeltwo,usingthenetworkmodel,wefytheinfluenceofresearchersandpapers,showingthestrongabilityofourmodeltoevaluateacademicindex.Asamatterofafact,ourmodelscanbeappliedinvariousfieldsseeminglyhavenothingtodowithscience.Sointhefollowingsection,wewillemployournetworkmodeltoevaluatetheinfluenceof moviestars,andconsideritsextensionwidely. Copyright2014@All All Applyingmodelstoaspecific
Page14ofThecinemaofHongKongisoneofthethreemajorthreadsinthehistoryofChi-neselanguagecinema,alongsidethecinemaof,andthecinemaof.Fordecades,HongKongwasthethirdlargestmotionpictureindustryintheworldandthesecondlargestexporter.SoitisobviousthattheindustryofHongKong’scinemayssuchapredominateroleinandeventhewholeworldthatithasgreatlyprompt-edthedevelopmentofthecinemaindustryinand.TherearesomeilluminatedmoviestarsfromHongKong,suchasJackieChan,Tonyleungchiuwai,AndyLauandsoonwhoalsohaveagreatreputationaroundtheworld.[6]ForthefactthatTonyleungchiuwaihasaverymagnificentcinemacareer,includingbeingawardedtheGoldenHorsebestactornominationmorethanonce,wedecidetorecetheErdo¨sinthepreviousnetworkmodelwithhim,andthenqualifytherangeoftimeandtheregion,inorderingthatwecanconstructanewnetworkmodelbasedontheModel1whichcanbeusedtoassessamoviestar’sinfluencedegree.ForthefactthatTonyleungchiuwaihasaverymagnificentcinemacareer,includingbeingawardedtheGoldenHorsebestactornominationmorethanonce,wedecidetorecetheErdo¨sinthepreviousnetworkmodelwithhim,andthenqualifytherangeoftimeandtheregion,inorderingthatwecanconstructanewnetworkmodelbasedontheModel1whichcanbeusedtoassessamoviestar’sinfluencedegree.Besidesthat,wealsoneedanindextoassesseachactor’seffectonthe’sbox-office,andtheindexcanbeconsideredastheimportancedegreeModel1asabalanceofaactor’sstrength.Wenormalizetheaverageofthebox-officeofmovieswhereeachactorhasprticipatedinrecentfiveyearsasthenumberofthisbox-office’sinfluence.Table5:Theindexesofthemovieinfluencebox-1Zhou29Zhao34Andy5Zhang6Shu78Jet89Donnie98Jackie8LouisTeam
Page15ofPuttingthenumberintothematrixdepictingthecooperatedrelationshipbetweendifferentactors,wecangetthenumericaldataofthe31actorsinfluencedegreeusingthePageRankalgorithm.Rankingthestarsbytheinfluencedegree,wecangettheToptenshowninthechart:yzingtheTable5,wecanfindoutthatthebox-officeindicatingtheactorsstrengthhassomecontributiononthestarsinfluence,buttheactorscooperatingrela-tionshipnetworkalsoisanunignorablefactor.TakingZhangZiyiasanexample,whileshehasainferiorbox-officethanotherstars,wejustfindthecorrespondingnodehasahigherdegree,thatis,shehasmanymorecooperatedstarsthanothers,whichresultsinherhigherinfluencedegree.However,theJackieChanisanoddcase,hemainlypartici-patedintheactionmovies,addinghislackofcooperationwith overallinfluenceisnotthatsuperiordespiteofhisstrongbox-office.What’smore,thecurr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国琼脂胶行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国玻璃纤维增强聚氨酯行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国煤电行业市场深度发展趋势与前景展望战略研究报告
- 2025-2030中国热安全摄像机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国漂白土行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国溶出系统行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国深度学习行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国液压梳洗台行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国液位开关行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国消费品行业市场发展趋势与前景展望战略研究报告
- 2024年6月广东省高中学业水平考试地理试卷(含答案)
- 《安徒生童话》测试题(含答案)
- 医学核磁共振成像仪器的使用和操作
- 时间偏好与跨期决策的关系
- XX分公司海外财务管理制度
- 小学教科研课题:《小学科学课堂生活化教学研究》课题实验阶段总结报告
- 盾构始发接收施工技术培训课件
- 部编版语文七年级下册第六单元类文阅读理解题(含解析)
- 个人原因动物检产品检疫合格证明丢失情况说明
- 油田伴生地热的开发与利用
- 小学教科版四年级下册科学《种子长出了根》教学反思
评论
0/150
提交评论