




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018届河南省南阳市第一高三第二十次考试数学(文)试题一、单选题1.已知集合,则=()A.B.C.D.【答案】B【解析】由题意,得,,则,;故选B.2.在复平面内,复数满足则对应的点为于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】分析:利用复数代数形式的乘除运算化简,进一步求出对应的点的坐标即可.详解:由,得,,则对应的点的坐标为,位于第二象限,故选B.点睛:本题考查复数代数形式的乘除运算,考查复数的坐标表示法及其几何意义,是基础题.复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.对于一组数据,如果将它们改变为,则下列结论正确的是()A.平均数不变,方差变B.平均数与方差均发生变化C.平均数与方差均不变D.平均数变,方差保持不变【答案】D【解析】分析:先根据平均数的公式变化前后的平均数,再根据方差公式进行计算变化前后的方差,从而可得结果.详解:由平均数公式得,变化前的平均数为,变化后的平均数为;变化前方差,变化后方差可得平均数变,方差保持不变,故选D.点睛:本题考查了平均数和方差的公式,平均数是所有数据的和除以数据的个数,,方差是一组数据中各数据与它们的平均数的差的平方的平均数.4.执行如图所示的程序框图,当输入时,则输出的的值是()A.B.C.D.【答案】B【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.详解:模拟程序的运行,可得,执行循环体,,不满足条件,执行循环体,;不满足条件,执行循环体,;满足条件,退出循环,输出的值为,故选B.点睛:本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.5.已知双曲线的一条渐近线平行于直线,一个焦点在直线上,则双曲线的方程为()A.B.C.D.【答案】A【解析】分析:根据渐近线的方程和焦点坐标,利用的关系,列出方程求出,代入双曲线的方程即可.详解:双曲线的一条渐近线平行于直线,所以可得,令可得,,即,解得双曲线的方程是,故选A.点睛:本题考查双曲线的标准方程,以及简单几何性质的应用,属于基础题.本题主要考查待定系数求双曲线方程,属于简单题.用待定系数法求双曲线方程的一般步骤;①作判断:根据条件判断双曲线的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.6.已知,则下列不等式错误的是()A.B.C.D.【答案】D【解析】分析:根据幂函数与指数函数的性质可得选项正确;根据对数函数的性质可得正确,利用特值法可得错误.详解:因为函数与函数在定义域内递增,所以正确;由可得正确,令可得错,故选D.点睛:本题主要考查幂函数的单调性、指数函数的单调性以及对数函数的单调性与特值法判断不等式,属于中档题.7.若,则()A.B.C.D.【答案】A【解析】由题目条件得,而点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.8.已知曲线,则下列说法正确的是()A.把上各点横坐标伸长到原来的倍,再把得到的曲线向右平移,得到曲线B.把上各点横坐标伸长到原来的倍,再把得到的曲线向右平移,得到曲线C.把向右平移,再把得到的曲线上各点横坐标缩短到原来的,得到曲线D.把向右平移,再把得到的曲线上各点横坐标缩短到原来的,得到曲线【答案】B【解析】对于,对于,,对于,,对于,,故选B.【方法点晴】本题主要考查诱导公式、函数三角函数函数图象的性质及变换,属于中档题.函数图象的确定除了可以直接描点画出外,还常常利用基本初等函数图象经过“平移变换”“翻折变换”“对称变换”“伸缩变换”得到,在变换过程中一定要注意变换顺序.本题是先对函数图象经过“放缩变换”再“平移变换”后,根据诱导公式化简得到的.9.某几何体的三视图如图所示,依次为正视图,侧视图和俯视图,则这个几何体体积为()A.B.C.D.【答案】B【解析】分析:由三视图还原几何体,利用分割法,根据球的体积公式以及棱锥的体积公式可求出组合体的体积.详解:由三视图可知,几何体是如图所示的组合体,该组合体由一个三棱锥与四分之三球体组成,其中棱锥的底面是等腰直角三角形,一侧面与底面垂直,球半径为,所以可得,该几何体的体积为:,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.10.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,若每人所得按缴税,则前10天缴税A.升B.升C.升D.升【答案】A【解析】易知每天派遣的人数构成等差数列,记为,则,,故前10天缴税升.11.在四面体中,,,底面,为的重心,且直线与平面所成的角是,若该四面体的顶点均在球的表面上,则球的表面积是()A.B.C.D.【答案】D【解析】分析:求出△ABC外接圆的直径,利用勾股定理求出球O的半径,即可求出球O的表面积.详解:取的中点为E,由题意,AE=,AD=,cos∠BAC==﹣,∴sin∠BAC=,∴△ABC外接圆的直径为2r==,设球O的半径为R,∴R==∴球O的表面积为,点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12.已知函数存在互不相等实数,,,,有.现给出三个结论:(1);(2),其中为自然对数的底数;(3)关于的方程恰有三个不等实根.正确结论的个数为()A.0个B.1个C.2个D.3个【答案】C【解析】画出函数图像如图所示,显然当时方程存在互不相等实根,,,,则(1)正确;(2)当时,,即;当时,,故(2)正确;(3)求函数与交点的个数,当时,yu恰有四个不等实根.故(3)错误故选C二、填空题13.已知,设与的夹角为,则等于__________.【答案】【解析】分析:根据向量数量积的定义以及向量夹角公式进行求解即可.详解:由,得,即,则,则,,故答案为.点睛:本题主要考查向量数量积的应用,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,先求出的值,利用夹角公式求解即可.(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).14.在公比为的正项等比数列中,,则当取得最小值时,__________.【答案】【解析】分析:先将用与公比表示,利用基本不等式求解即可.详解:,当且仅当取得最小值时,,故答案为.点睛:本题考查等比数列的性质,以及基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).15.若实数满足约束条件,则的取值范围为__________.【答案】【解析】绘制不等式组表示的平面区域,如图中阴影部分所示,易知表示可行域内的点与点连线的斜率,则最小值为,最大值为,故的取值范围为.点睛:在签章的线性规划问题中,经常会遇到非线性目标函数,这里常用方法是非线性目标函数的几何意义,如直线的斜率,两点间的距离等.这类题几何意义是关键.16.设抛物线的焦点为,过的直线交抛物线于两点,过的中点作轴的垂线与抛物线在第一象限内交于点,若,则直线的方程为__________.【答案】【解析】分析:求出抛物线焦点为,准线为,设,直线方程为,由与抛物线方程消去得关于的一元二次方程,利用根与系数的关系算出的坐标,根据,利用两点间的距离公式解出,进而得到结论.详解:抛物线方程为,抛物线焦点为,准线为,设,因为在第一象限,所以直线的斜率,设直线方程为,代入抛物线方程消去,得,,过的中点作准线的垂线与抛物线交于点,设点的坐标为,可得,,,得到,可得,,,解之得,所以,直线方程为,即,,故答案为.点睛:本题主要考查抛物线的标准方程与简单性质,以及抛物线与直线的位置关系,属于难题.解答直线与抛物线位置关系的问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.三、解答题17.已知函数.(1)求函数的单调递减区间;(2)若的内角,,所对的边分别为,,,,,,求.【答案】(1),.(2).【解析】试题分析:(1化简可得.由,了求其单调递减区间;(2)由,可得,由正弦定理可得,最后由余弦定理可得.试题解析;(1).由,,得,.∴函数的单调递减区间为,.(2)∵,,∴.∵,∴由正弦定理,得.又由余弦定理,,得.解得.18.如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求四面体的体积.【答案】(1)见解析;(2)【解析】分析:(1)由面面垂直的性质定理得到⊥平面,即,进而得到平面平面,(2)由等体积法求解,。详解:(1)证明:∵四边形是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)取BC的中点O,连接OP、OE.∵平面,∴,∴,∵,∴.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,PO平面PBC,∴PO⊥平面ABCD,∵AE平面ABCD,∴PO⊥AE.∵∠PEA=90O,∴PE⊥AE.∵PO∩PE=P,∴AE⊥平面POE,∴AE⊥OE.∵∠C=∠D=90O,∴∠OEC=∠EAD,∴,∴.∵,,,∴,.点睛:本题主要考查面面垂直,线面垂直,考查三棱锥体积的求法,考察学生分析解决问题的能力,考查学生的空间想象能力。19.2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:收看没收看男生6020女生2020(Ⅰ)根据上表说明,能否有的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、女学生各选取多少人?(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.附:,其中.【答案】(1)见解析;(2)(i)男生有6人,女生有2人.(ii).【解析】分析:(Ⅰ)因为,所以有的把握认为,收看开幕式与性别有关;(Ⅱ)(ⅰ)根据分层抽样方法得,男生人,女生人;(ⅱ)从人中,选取人的所有情况共有种,其中恰有一名男生一名女生的情况共有种,由古典概型概率公式可得结果.详解:(Ⅰ)因为,所以有的把握认为,收看开幕式与性别有关.(Ⅱ)(ⅰ)根据分层抽样方法得,男生人,女生人,所以选取的8人中,男生有6人,女生有2人.(ⅱ)从8人中,选取2人的所有情况共有N=7+6+5+4+3+2+1=28种,其中恰有一名男生一名女生的情况共有M=6+6=12种,所以,所求概率.点睛:本题主要考查频率分层抽样、古典概型概率公式以及独立性检验,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)20.已知椭圆的右焦点为,以原点为圆心,为半径的圆与椭圆在轴右侧交于两点,且为正三角形。(1)求椭圆方程;(2)过圆外一点,作倾斜角为的直线交椭圆于两点,若点在以线段为直径的圆的内部,求的取值范围,【答案】(1);(2).【解析】分析:(1)由题意可得,∴,结合,解得,从而可得结果;(2)点在以线段为直径的圆的内部,等价于,设直线,联立,消去得,利用韦达定理,平面向量数量积公式列不等式求解即可的结果.详解:(1)∵为正三角形,且关于轴对称,,∴∴,即点,∴,又∵,解得,故椭圆方程为.(2)易知直线,联立,消去得,由,得,即,设,则,∴又,则∵在圆的内部,∴,∴,解得,又∵,∴,即的取值范围为点睛:求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.设函数.(1)讨论函数的单调性;(2)若,且在区间上恒成立,求的取值范围.【答案】(1)答案见解析;(2).【解析】分析:(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)若,且在区间上恒成立,等价于在区间上,分两种情况讨论,分别利用导数研究函数的单调性,求出,解不等式即可的结果.详解:(1)函数的定义域为,,当时,,函数在区间上单调递增,在区间上单调递减;当时,,函数在区间上单调递增,在区间上单调递减;当时,,函数在区间上单调递增,在区间上单调递减,在区间上单调递增;当时,,函數在上单调递增当时,,函数在区间上单调递增,在区间上单调递减,在区间上单调递增;(2)若,且在区间上恒成立,等价于在区间上;由(1)中的讨论,当时,,函数在区间上单调递减,,即,从而得当时,,函数在区间上单调递减,在区间上单调递增,即只需即,由于从而得综上,的取值范围为点睛:本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.22.在直角坐标系中,直线和曲线的参数方程分别为(为参数),(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小区场地租赁合同
- 装饰装修施工协议合同
- 内河船舶光船租赁合同
- 数据保密协议合同
- 公寓承包装修合同
- 劳务承包合同材料合同
- 售房房屋买卖合同
- 《北京的春节》课件-3
- 《列宁领导的社会主义革命与建设》急剧动荡的现代世界课件-2
- 工地小件采购合同范本
- 2025年中医针灸学主治医师-中医针灸学考试题(附答案)
- 老年人安全用药与护理
- 黑色三分钟生死一瞬间第9、10部
- 适老化住宅改造服务行业深度调研及发展战略咨询报告
- 2025年郑州黄河护理职业学院单招职业技能测试题库及答案1套
- 《水利工程白蚁防治技术规程SLT 836-2024》知识培训
- GB/T 45236-2025化工园区危险品运输车辆停车场建设规范
- 夏季军营安全教育
- 新地基基础-基桩静荷载试验考试复习题库(含答案)
- 《致敬英雄》课件
- 房地产开发项目资金监管协议
评论
0/150
提交评论