版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年中考数学统一命题的省自治区压轴模拟试卷2021年中考数学压轴模拟试卷01(山西省专用)(满分120分,答题时间120分钟)第I卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算的结果是()A. B. C. D.【答案】C【解析】根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.(-6)÷(-)=(-6)×(-3)=18.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体 C.球体D.圆锥体【答案】A【分析】根据平面与曲面的概念判断即可.【解析】A.六个面都是平面,故本选项正确;B.侧面不是平面,故本选项错误;C.球面不是平面,故本选项错误;D.侧面不是平面,故本选项错误.3.下列运算正确的是()A.(x+y)2=x2+y2 B.x3+x4=x7C.x3•x2=x6 D.(﹣3x)2=9x2【答案】D【解析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.A.(x+y)2=x2+2xy+y2,故此选项错误;B.x3+x4,不是同类项,无法合并,故此选项错误;C.x3•x2=x5,故此选项错误;D.(﹣3x)2=9x2,正确.4.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个 B.8个 C.14个 D.13个【答案】D【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.5.如图,在矩形ABCD中,AB=3,BC=10,点E在BC边上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为()A.2 B.3 C.4 D.5【答案】B【分析】证明△AFD∽△EBA,得到AFBE=ADAE=DFAB【解析】∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴AFBE∵DF=6,∴AF=1∴8BE∴AE=5,∴EF=AF﹣AE=8﹣5=36.不等式组的解集是()A. B. C. D.【答案】A【解析】先分别求出各不等式的解集,最后再确定不等式组的解集.解:由①得x>3由②得x>5所以不等式组的解集为x>5.7.反比例函数y=-A.图象经过点(1,﹣3) B.图象位于第二、四象限 C.图象关于直线y=x对称 D.y随x的增大而增大【答案】D【解析】由点(1,﹣3)的坐标满足反比例函数y=-3x由k=﹣3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数y=-3x关于y=x由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的。8.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣π B.16﹣2π C.8﹣2π D.8﹣π【答案】C【解析】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.根据S阴=S△ABD﹣S扇形BAE计算即可.S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π9.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为()min.A.1.75.B.3.75.C.13.75.D.23.75.【答案】B.【解析】根据二次函数的性质可得.根据题意:y=﹣0.2x2+1.5x﹣2,当x=-1.52×(-0.2)则最佳加工时间为3.75min.10.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90 B.0.82 C.0.85 D.0.84【答案】B【解析】根据大量的实验结果稳定在0.82左右即可得出结论.∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.第II卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:________.【答案】5【解析】原式=2+2+3−2=5.12.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=.【答案】1010.【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当图中有2019个菱形时,2n﹣1=2019,n=1010.13.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.【答案】9【解析】直接根据众数的定义可得答案.圆周率的小数点后100位数字的众数为9,14.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.【答案】13【分析】先利用因式分解法解方程x2﹣8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【解析】∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.15.如图,在中,,,垂足为点,如果,,那么线段的长是.【答案】.【解析】在中,根据直角三角形的边角关系求出,根据勾股定理求出,在在中,再求出即可.在中,,,,,,,,在中,。三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(8分)(1)计算:(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.第一步第二步第三步第四步第五步第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】(1)1;(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“”号,去掉括号后,括号里的第二项没有变号;任务二:;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析.【解析】(1)先分别计算乘方,与括号内加法,再计算乘法,再合并即可得到答案;(2)先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.(1)原式(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“”号,去掉括号后,括号里的第二项没有变号;任务二:解;.任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【点睛】本题考查的是有理数的混合运算,分式的化简,掌握以上两种以上是解题的关键.17.(9分)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有多少种?【答案】4【分析】设可以购买x支康乃馨,y支百合,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出小明有4种购买方案.【解析】设可以购买x支康乃馨,y支百合,依题意,得:2x+3y=30,∴y=10-23∵x,y均为正整数,∴x=3y=8,x=6y=6,x=9y=4∴小明有4种购买方案.18.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AC上一点,∠ADC=∠G.(1)求证:∠1=∠2.(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙【答案】见解析。【分析】(1)根据圆周角定理和AB为⊙O的直径,即可证明∠1=∠2;(2)连接DF,根据垂径定理可得FD=FC=10,再根据对称性可得DC=DF,进而可得DE的长,再根据锐角三角函数即可求出⊙O的半径.【解析】(1)∵∠ADC=∠G,∴AC=∵AB为⊙O的直径,∴BC=∴∠1=∠2;(2)如图,连接DF,∵AC=AD,AB是⊙∴AB⊥CD,CE=DE,∴FD=FC=10,∵点C,F关于DG对称,∴DC=DF=10,∴DE=5,∵tan∠1=2∴EB=DE•tan∠1=2,∵∠1=∠2,∴tan∠2=2∴AE=DE∴AB=AE+EB=29∴⊙O的半径为29419.(10分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【答案】见解析。【分析】(1)根据中位数和众数的定义求解可得;(2)利用加权平均数的定义求解可得;(3)用单价乘以(2)中所得平均数,再乘以存活的数量,从而得出答案.【解析】(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.4+1.52=1.45(kg),众数是1.5故答案为:1.45kg,1.5kg.(2)x=1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.20.(10分)如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【答案】见解析。【分析】(1)根据尺规作基本图形的方法:①作∠ABC的角平分线交AD于点E即可;②作线段DC的垂直平分线交DC于点F即可.(2)连接EF,根据等腰三角形的性质和三角形中位线定理,即可写出线段EF和AC的数量关系及位置关系.【解析】(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD=BA,BE平分∠ABD,∴点E是AD的中点,∵点F是CD的中点,∴EF是△ADC的中位线,∴线段EF和AC的数量关系为:EF=12位置关系为:EF∥AC.21.(12分)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形和是闸机的“圆弧翼”,两圆弧翼成轴对称,和均垂直于地面,扇形的圆心角,半径,点与点在同一水平线上,且它们之间的距离为.(1)求闸机通道的宽度,即与之间的距离(参考数据:,,);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的倍,人的团队通过一个智能闸机口比通过一个人工检票口可节约分钟,求一个智能闸机平均每分钟检票通过的人数.【答案】(1)与之间的距离为;(2)一个智能闸机平均每分钟检票通过的人数为人.【解析】(1)连接,并向两方延长,分别交,于点,,则,,根据的长度就是与之间的距离,依据解直角三角形,即可得到可以通过闸机的物体的最大宽度;(2)设一个人工检票口平均每分钟检票通过的人数为人,根据“一个智能闸机的平均检票速度是一个人工检票口平均检票速度的倍,人的团队通过一个智能闸机口比通过一个人工检票口可节约分钟”列出分式方程求解即可;还可以设一个智能闸机平均每分钟检票通过的人数为人,根据题意列方程求解.解:连接,并向两方延长,分别交,于点,.由点与点在同一水平线上,,均垂直于地面可知,,,所以的长度就是与之间的距离.同时,由两圆弧翼成轴对称可得.在中,,,,,..与之间的距离为.(1)解法一:设一个人工检票口平均每分钟检票通过的人数为人.根据题意,得解,得.经检验是原方程的解当时,答:一个智能闸机平均每分钟检票通过的人数为人.解法二:设一个智能闸机平均每分钟检票通过的人数为人.根据题意,得.解,得经检验是原方程的解.答:一个智能闸机平均每分钟检票通过的人数为人.【点睛】本题考查了解直角三角形及列分式方程解应用题,关键是掌握含30度的直角直角三角形的性质.22.(12分)综合与实践如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.【答案】(1)全等,理由见解析;(2)BD=;(3)△ACD的面积为,AD=.【解析】(1)依据等式的性质可证明∠BCD=∠ACE,然后依据SAS可证明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)过点A作AF⊥CD于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得△ACD的面积,最后根据勾股定理可得AD的长.【详解】解:(1)全等,理由是:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如图3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等边三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴,∴BD=;(3)如图2,过点A作AF⊥CD于F,∵B、C、E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=,∴S△ACD=,∴CF=AC×cos∠ACF=1×,FD=CD﹣CF=,在Rt△AFD中,AD2=AF2+FD2=,∴AD=.【点睛】本题考查等边三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等,第(3)小题巧作辅助线构造直角三角形是解题的关键.23.(14分)综合与探究如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62394:2024 EN Service diagnostic interface for consumer electronics products and networks - Implementation for ECHONET
- 淮阴师范学院《中国文化概论》2023-2024学年第一学期期末试卷
- 淮阴师范学院《音乐创作与改编》2023-2024学年第一学期期末试卷
- 淮阴师范学院《小学教育教学叙事研究》2022-2023学年第一学期期末试卷
- 音乐测评课件教学课件
- 淮阴师范学院《公共政策学》2023-2024学年第一学期期末试卷
- 淮阴工学院《食品质量管理1》2022-2023学年第一学期期末试卷
- 淮阴师范学院《电工电子技术》2022-2023学年期末试卷
- DB6110-T 54-2024《党政机关会务服务规范》
- DB4106T123-2024政务服务中心“有诉即办”服务规范
- 工业自动化系统集成项目验收方案
- 第一讲 伟大事业都始于梦想(课件)
- 管道补偿器安装检验记录
- 学校食堂出入库管理制度
- 限制被执行人驾驶令申请书
- 铝合金船的建造课件
- 边坡土石方开挖施工方案
- 八年级上册语文课后习题及答案汇编(部分不全)
- 玻璃厂应急预案
- 安全帽生产与使用管理规范
- 货车进入车间安全要求
评论
0/150
提交评论