![图像处理与控制系统课件_第1页](http://file4.renrendoc.com/view/855fa701b75ff6e6913575c46d5432a1/855fa701b75ff6e6913575c46d5432a11.gif)
![图像处理与控制系统课件_第2页](http://file4.renrendoc.com/view/855fa701b75ff6e6913575c46d5432a1/855fa701b75ff6e6913575c46d5432a12.gif)
![图像处理与控制系统课件_第3页](http://file4.renrendoc.com/view/855fa701b75ff6e6913575c46d5432a1/855fa701b75ff6e6913575c46d5432a13.gif)
![图像处理与控制系统课件_第4页](http://file4.renrendoc.com/view/855fa701b75ff6e6913575c46d5432a1/855fa701b75ff6e6913575c46d5432a14.gif)
![图像处理与控制系统课件_第5页](http://file4.renrendoc.com/view/855fa701b75ff6e6913575c46d5432a1/855fa701b75ff6e6913575c46d5432a15.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
图像处理与控制系统授课教师:祝海江电子邮箱:办公地点:科技楼502室简介2004年6月毕业于中国科学院自动化研究所模式识别国家重点实验室模式识别与智能系统专业,获得工学博士学位;同年7月进入北京化工大学信息科学与技术学院工作;2006.6-2007.6在日本岩手大学工学部任客座研究员;主要从事机器视觉、图像处理、信号处理与检测等方向的教学与科研工作。承担国家自然科学基金、教育部留学回国人员科研启动基金、中央高校基本科研业务费等国家和省部级课题。科技楼502研究室常规计算机控制系统u计算机保持器广义对象测量变送器e(kT)u(kT)y单回路计算机控制系统示意图ym采样器A/DD/A计算机系统设定值r基于图像处理的控制系统系统框图:控制平台/控制策略执行机构被控对象摄像头图像处理模块数模转换数字图像处理概述图像获取图像增强与滤波图像分割图像特征提取本田公司最新开发的新型机器人“阿西莫”
世界第一个机器人艺人“Ever-2Muse”ThegoalofDigitalImageProcessingistoenabletheprocessofrecognition.TheultimategoalofDIPistoenableacomputingmachinetorecognizeatleastgeometricalsizes,shapesandotherobjectsasinhumanvisionDIPisabranchofArtificialIntelligence(AI).AnattempttoemulatehumanvisioniscalledweakAI.ToexactlyproduceahumanreplicaelectronicallyiscalledstrongAI.什么是数字图像处理(DigitalImageProcessing)?原始图像噪声图像低通滤波后的图像原始图像直方图增强图像边缘检测(Robertoperator)边缘检测(Sobeloperator)数字图像处理的应用1.InFlexibleManufacturingSystems:ProductInspection(产品检测)Assembly(装配)VehicleGuidance(车辆导航)2.InBiomedicalEngineering:AnalyzingChromosome(染色体分析)Tomography(断层摄影术)X-rayAnalysis(X射线分析)医疗产品检测3.InMilitaryAreas:BombDisposal(炸弹处理)Infra-redNightVision(红外线夜视)RadarImageProcessing(雷达图像处理)TargetIdentification(目标识别)4.InCivilianAreas:Telecommunications(可视化通讯)Firefighting(消防)Fingerprintdetection(指纹识别)IntelligentVehicleHighwaySystem(智能交通系统)FingerprintDetectionSystem5.InCommercialAreas:BarCodeReader(条形码阅读器)TextReader(文本阅读器)Multimedia(多媒体)6.InScientificExperiments:FingerprintDetection(指纹识别)SpaceExploration(太空探索)GeographicStudies(地理学)Archaeology(考古学)Physics(物理)简要历史回顾1920图像在伦敦与纽约之间经由海底电缆传输1921照相复制技术产生1929图像亮度级别从5增加到15,图像复制技术改进1964计算机首次应用到处理图像中JetPropulsionLab(JPL)Now数字图像处理及模式识别在许多领域广泛应用数字图像处理系统回顾1.ImageCapturingSystem(图像获取系统)2.ImageEnhancementSystem(图像增强系统)3.FeatureExtractionSystem(特征提取系统)4.FeatureRepresentationandDescriptionSystem(特征表示与描述系统)5.ObjectClassificationSystem(目标分类系统)图像获取400800BlueGreenRedInfrared红外线Ultraviolet紫外线VisiblelightX-raysWavelength(nanometers)成像方式Radiance光辉Irradiance发光点光源相机目标传感器NZOpticalaxisSurfacenormalPixelPixelPixelDigitalimage196Graylevel92图像坐标系统
crI[0,0]I[M-1,0]I[M-1,N-1]rasteroriented
光栅导向usesrowandcolumncoordinatesstartingat[0,0]fromthetopleftxyF[0,0]F[M-1,N-1]Cartesian笛卡尔coordinateframewith[0,0]atthelowerleftxy[0,0][W/2,H/2][-W/2,-H/2]Cartesiancoordinateframewith[0,0]attheimagecenterRelationshipofpixelcenterpoint[x,y]toareaelementsampledinarrayelementI[i,j][x0,y0][x0+ix,y0+jy]F[i,j]F[i+1,j]图像类型1:模拟图像
Ananalogimageisa2DimageF(x,y)which -hasinfinite
precisioninspatialparameters
xandy,and -infinite
precisioninintensityateachspatialpoint(x,y).yxf(xi,yi)=Realnumberxi=Realnumberyi=Realnumber2:数字图像
Adigitalimageisa2D
imageI[r,c]representedbyadiscrete2Darrayofintensitysamples,eachofwhichisrepresentedusingalimitedprecision.Itiscommontorecordintensityasan8‑bit(1‑byte)numberwhichallowsvaluesof0to255.256differentlevelsisusuallyalltheprecisionavailable-fromthesensorand-alsoisusuallyenoughtosatisfytheconsumer.
yxf(xi,yi)=Integerxi=Integeryi=Integer3:Apicturefunction
isamathematicalrepresentation
f(x,y)ofapictureasafunctionoftwospatialvariablesxandy.
xandyarerealvaluesdefiningpointsofthepicture.
f(x,y)isusuallyalsoarealvaluedefiningtheintensityofthepictureatpoint(x,y).
4:单色灰度图像Agray‑scaleimage
isamonochromedigitalimagef(x,y)withone
intensityvalue
perpixel.f(x,y)=0f(x,y)=89f(x,y)=2185:彩色图像Amultispectralimage
isa2DimageM[x,y],whichhasavectorofvaluesateachspatialpointorpixel.Iftheimageisactuallyacolorimage,thenthevectorhas3elements.I=0.11R+0.59G+0.3B6:二值图像Abinaryimageisadigitalimagewithallpixelvalues0or1.图BA像xyf(x,y)=1f(x,y)=07:分类图像Alabeledimage
isadigitalimageL[r,c]whosepixelvaluesaresymbols.Thesymbolvalueofapixeldenotestheoutcomeofsomedecisionmadeforthatpixel.OriginalimageLabeledimageBoundariesoftheextractedfaceregionOriginalimage(tiger)Labeledimage1:标称分辨度
ThenominalresolutionofaCCDsensoristhesizeofthesceneelementthatimagestoasinglepixelontheimageplane.Eachpixelofadigitalimagerepresentsasampleofsomeelementalregionoftherealimage.图像度量与量化(数字化)pixel3DSceneLensImagePlaneSizeofsceneelementpixelIfthepixel
isprojected
fromtheimageplane
backouttothesourcematerialinthescene,thenthesizeofthatsceneelementisthenominalresolution标称分辨度
ofthesensor.pixel3DSceneLensImagePlaneForexample,ifa10inchsquaresheetofpaperisimagedtoforma500500digitalimage,thenthenominalresolutionofthesensoris0.02inches(10/500=0.02).1010inch25005002:分辨率Thetermresolution
referstotheprecisionofthesensorinmakingmeasurements,butisformallydefinedindifferentways.Ifdefinedinrealworldterms,itmayjustbethenominalresolution,asin“theresolutionofthisscannerisonemeterontheground”Oritmaybeinthenumberoflinepairspermillimeterthatcanberesolvedordistinguishedinthesensedimage.3:视野Thefieldofviewofasensor(FOV)isthesizeofthescenethatitcansense,forexample10inchesby10inches.(a)Digitalimagewith127rowsof176columns;(b)(6388)createdbyaveragingeach22neighborhoodof(a)andreplicatingtheaveragetoproducea22averageblock;(c)(3144)createdinsamemannerfrom(b);
and(d)(1522)createdinsamemannerfrom(c).Effectivenominalresolutionsare(127176),(6388),
(3144),and(1522)respectively.AquantizerisanAnalog-to-Digitaldevicewhichconvertsacontinuous
inputsignalutooneofasetofdiscretelevelscalledreconstructionlevels
rk.Supposetheuliesintherange:umin
u
umaxandwewishtoquantizeuintoL
levels.Thenwedefine
L+1
transitionlevelstk:
t0=umin<t1<……<tL-1<tL=umaxThequantizationstepinvolvesmappingutoitsquantizedvalue,u*,usingtherule: Define{tk,k=0,…,L}asasetofincreasingtransitionordecisionlevelswitht0andtLastheminimumandmaximumvalues,respectively,ofu.ImageQuantization图像量化(数字化)Agraphicalrepresentation(staircasemap)ofthequantizationfunctionisasbelow:Usually,L=2B
(B-bitrepresentation).D=tL–t0
=umax-uminiscalledthedynamicrange.ErrorofquantizationclearlydependsonLandD,aswellasonthechoiceofreconstructionlevelsandtransitionlevels.uu*Quantizerrktkuu*rLr0t0tL图像量化中的一些问题1010arrayofblack(brightness0)andwhite(brightness8)tiles;(b)
Intensitiesrecordedina55imageofpreciselythebrightnessfieldattheabove,whereeachpixelsensestheaverage
brightnessofa22
neighborhoodoftiles;(0+0+0+8)/4=2(0+0+0+8)/4=2(d)Intensitiesrecordedfromtheshiftedcamerainthesamemannerasin(b).(c)Imagesensedbyshifted
cameraonetiledownandonetiletotheright.0000000000000080880(8+0+0+0)/4=2Notethatthequantizedbrightnessvaluesdepend
onboththeactualpixelsizeandpositionrelativetothebrightnessfield;Interpretationoftheactualscenefeatureswillbeproblematicwitheitherimage(b)or(d).(b)(d)Notethatthequantizedbrightnessvaluesdependonboththeactualpixelsizeandpositionrelativetothebrightnessfield.Differentdigitalimages数字化效果ColourimageGray-scaleimage512X256Gray-scaleimage256X128Theresolutiondependsonthespatialquantization(thenumberofsamplesperinch)Gray-scaleimage64X32Gray-scaleimage32X16Gray-scaleimage128X64Theresolutiondependsonthespatialquantization(thenumberofsamplesperinch)8-Bitimage(256levels)7-Bitimage(128levels)Thequalityoftheimagedependsontheintensityquantization(thenumberofgraylevels)6-Bit(64levels)5-Bit(32levels)4-Bit(16levels)3-Bit(8levels)2-Bitimage(4levels)1-Bitimage(2levels)Thequalityoftheimagedependsontheintensityquantization(thenumberofgraylevels)数字化效果1.Run‑CodedBinaryImages
Run‑codingisanefficientcodingschemeforbinaryorlabeledimages:notonlydoesitreducememoryspace,butitcanalsospeedupimageoperations.Example:
ImageRowr
1111111111100000
Run‑codeA
8(0)5(1)12(0)3(1)7(0)9(1)5(0)Run‑codingisoftenusedforcompressionwithinstandard.图像格式2.PGM:PortableGrayMapP2#samplesmallpicture8rowsof16columns,maxgrayvalueof192#makinganimageoftheword"Hi".
168192PrintedpictureImagemadeusingalossycompressionalgorithmOneofthesimplestforstoringandexchangingimagedataisthePBMorPortableBitMapfamilyofformats(PBM/PGM,PPNI).
TheimageheaderandpixelinformationareencodedinASCII.3.GIFImageTheGraphicsInterchangeFormat(GIF)originatedfromCompuServe,Inc.IthasbeenusedtoencodeahugenumberofimagesontheWorldWideWeborincurrentdatabases.GIFfilesarerelativelyeasytoworkwith,butcannotbeusedforhigh‑precisioncolor,sinceonly8‑bitsareusedtoencodecolor.4.TIFFImageTIFForTIFis
verygeneralandverycomplex.Itisusedonallpopularplatformsandisoftentheformatusedbyscanners.Itsupportsmultipleimageswith1to24bitsofcolor
perpixel.TIFForTIFis
availableforeitherlossyorlosslesscompression.5.JPEGFormatforStillPhotosJPEG(JFIF/JFI/JPG)isamorerecentstandardfromtheJointPhotographicExpertsGroup.Themajorpurposeistoprovideforpracticalcompressionofhigh‑qualitycolorstillimages.Animagecanhaveupto64K64Kpixelsof24bitseach.6.PostScriptThefamilyofformatsBDF/PDL/EPSstoreimagedatausingprintableASCIIcharactersandareoftenusedwithX11graphicsdisplaysandprinters.PDLisapagedescriptionlanguageEPSisencapsulatedpostscript(originallyfromAdobe),whichiscommonlyusedtocontaingraphicsorimagestobeinsertedintoalargerdocument.7.MPEGFormatforVideoMPEG(MPG/MPEG‑1/MPEG‑2)isastream‑orientedencodingschemeforvideo,audio,text,andgraphics.MPEGstandsforMotionPictureExpertsGroup,aninternationalgroupofrepresentativesfromindustryandgovernments.MPEG‑1isprimarilydesignedformultimediasystemsandprovidesforadatarateof0.25Mbitspersecondofcompressedaudioand1.25Mbitsofcompressedvideo.Theseratesaresuitableformultimediaforpopularpersonalcomputers,butaretoolowforhigh‑qualityTV.MPEG‑2standardprovidesforupto15MbitsperseconddataratestohandlehighdefinitionTVrates.Thecompressionschemetakesadvantageofbothspatialredundancy,asusedinJPEG,andtemporalredundancyandgenerallyprovidesausefulcompressionratioof25to1,with200to1ratiospossible.图像增强与滤波Animageneedsimprovement
Low‑levelfeaturesmustbedetected
图像增强
例1:图像中的划痕被去掉。Scratches例2:亮度增强例3:机器零件边缘增强Left
-Originalsensedfingerprint;
Center
-Imageenhancedbydetectionandthinningofridges;
Right
-Identificationofspecialfeaturescalledminutia,whichcanbeusedformatchingtomillionsoffingerprintrepresentationsinadatabase.Example图像增强操作(1)点操作ContraststretchingNoiseclippingWindowslicingHistogrammodeling(2)掩膜操作NoisesmoothingMedianfilteringSharpingmaskingZooming对比度增强(a)Original(b)Enhanced(b)Enhanced(a)Original(a)Original(b)EnhancedClipingandthresholdingClipingandthresholding反色反色反色直方图增强
Histogramafterequalization
Originalimage
OriginalhistogramModifiedimage
Originalimage
OriginalhistogramModifiedimage
Histogramafterequalization
(a)Inputimage
(b)Processedimage(c)Inputimage
(d)Processedimage(e)Inputimage
(f)Processedimage
图像滤波
Often,animageiscomposedofsomeunderlyingidealstructure,whichwewanttodetectanddescribe,togetherwithsomerandom
noiseorartifact,whichwewouldliketoremove.ImagecontainsbothGaussiannoiseandbrightringartifactsImagewithrandomnoiseScratchesImagecontainsartifacts方框滤波器(BoxFilter)
Definition
:Smoothinganimagebyequally
weightingarectangularneighborhoodofpixelsiscalledusingaboxfilter.
Output-Image[r,c]= Averageofsomeneighborhoodof Input-Image[r,c]
Example:55NeighborhoodFilter-averages25pixelvaluesina55neighborhoodoftheinputimagepixelinordertocreateasmoothedoutputimage.Example80912308081331808030820803040340405050204000+03+08+12+03+05+40+30+09+13+40+40+80+80+00+50+30+80+80+00+20+40+20+30+1825=3080912308081331808030820803040340405050204030邻阈平均法OriginalImageNoisyImageNAF(3-by-3)NAF(5-by-5)NAF(7-by-7)UsefornoisesmoothingLPfilteringandsubsamplingofimages.AssumingwhitenoiseηwithzeromeanandvarianceThenthespatialaverage:assumingequalweightwhereisthespatialaverageof.Notethathaszeromeanandi.e.NoisepowerisreducedbyafactorofRemark:Neighborhoodaveragingintroducesadistortionintheformofblurring.
(a)Original(b)noisy(c)3×3filter(d)5×5filterSpatialaveragingfiltersforsmoothingimagescontainingGaussiannoise.
Definition
:WhenaGaussianfilterisused,pixel[x,y]isweightedaccordingtox高斯滤波(GaussianFilter)disthedistanceoftheneighborhoodpixel[x,y]fromthecenterpixel[xc,yc]oftheoutputimagewherethefilterisbeingapplied.[xc]g(x)[x]d[x] Ratherthanweightallinputpixelsequally,itisbetter
toreducetheweight
oftheinputpixelswithincreasingdistancefromthecenterpixelI[xc,yc].TheGaussianfilterdoesthisandisperhapsthemostcommonlyusedofallfilters.[xc]xg(x)高斯函数 One-DimensionalGaussianFunction Two-DimensionalGaussianFunctionExample809123080813318080308208030403404050502040001+031+081+121+031+051
+402+302
+092+131+401+402+803+802+001+501+302+802+802+001+201+401+201+301+181
25=5280912308081331808030820803040340405050204052Examples
NoisyimageIdealimagePixelvaluesinrow100ofthenoisyimagePixelvaluesinrow100ofthesmoothedimageNoiseaveragedusinga55neighborhoodExamples
NoisyimageM=32M=16M=8M=2M=128图像分割1.基于掩膜窗口的分割Imagepointsofhighcontrastcanbedetectedbycomputingintensitydifferencesinlocalimageregions.HighcontrastHighcontrastTypically,suchpointsformtheborder(oredge)betweendifferentobjectsorsceneparts.Neighborhood
templatesormaskscanbeused.Westartbyusingone‑dimensional(1D)signals.The1Dsignalscouldjustberowsorcolumnsofa2Dimage.(a)(b)BorderDifferencing2DImages(DetectingEdgesof2DImages)
Themaximumchangeofthecontrastinthe2Dpicturefunctionf(x,y)
occursalongthedirectionofthegradient
梯度
ofthefunction.(Edge)HighcontrastThedirectionofthe
gradient
梯度Mathematicformulaofthegradient:
Gradientmagnitudeor
GradientdirectionfxfyfLower/HigherintensitiesHigher/Lowerintensitiesfxfyf三种掩膜窗口:Sobelmasks210-1-2-1100Mx=0-12-10110-2My=110-1-1-11000-11-10110-1Mx=My=PrewittmasksMx=My=Robertmasks10-1-11000OriginalImage-LenaEnhancedLenabyHistogramEuqalizationEdgemapbyRobertoperatorEdgemapbySobeloperatorStep-1.Compute:MaskMx
isoverlaidonimageneighborhoodN8[x,y]
sothateachintensityNij
canbemultipliedbyweightMij;Finallyalltheseproductsaresummed.Prewittmasks644215356612143865fxfyfN8[x,y]110-1-1-1100Mx=Step-2.Compute:MaskMy
isoverlaidonimageneighborhoodN8[x,y]
sothateachintensityNij
canbemultipliedbyweightMij;Finallyalltheseproductsaresummed.644215356612143865fxfyfN8[x,y]0-11-10110-1My=Step-3.Compute:
Gradientmagnitude
Gradientdirection110-1-1-1100Mx=0-11-10110-1My=LowerintensitiesHigherintensities644215356612143865fxfyfN8[x,y]ExampleImageofJudithPrewittGradientimage
showingresultusingthePrewitt33operator(a)(b)Sobelmasks:theSobeloperatorrepresentsmany,butnotall,oftheimageedges.210-1-2-1100Mx=0-12-10110-2My= (a)Imageofnoisysquaredandrings,(b)Codingofgradientdirectioncomputedby33Sobeloperator.(a)(b)ExampleAninputimage(a)issmoothedusingGaussianfiltersofsize(b)=4,and(c)=1
beforeperformingedgedetection.Moredetailandmorenoiseisshownforthesmallerfilter.(b)(c)(a)=4=1Example: (a)ImageofthegreatarchinSt.Louis; (b)resultsofCannyoperatorwith=1; (c)resultsofCannyoperatorwith=4;(a)(b)(c)ExamplesImageofMao’sMemorial.ResultofapplyingCannyoperatorwith=1.Resultof=2.
Someobjectsaredetectedverywell,soaresomeshadows.(a)(b)(c)DifferentHistograms2.基于阈值的分割Tofindthethreshold,Letthehistogrambep(z)Find2localmaximaonp(z)thatareatleastsomeminimumdistanceapart;z1,z2sayFindz3betweenz1andz2atwhichp(z3)ismin.Checkthatp(z3)/[min(p(z1),p(z2))]tobesmallChoosez3tobethethresholdIfprobabilitydistributionofthe2regionisknown,thenwecanuseBayesiandecisiontheorytofindthethreshold. Letwi=pixelbelongstoregionI ThenchoosezsuchthatP(w1︱z)=P(w2︱z) ApplyBayesrule:
i.e.Selectzsuchthatp(z︱w2)P(w2)=p(z︱w1)P(w1)HistogramrepresentingobjectondarkbackgroundOriginalImage-LenaBinaryLenabyOtsuLenaHistogramThresholdat50Thresholdat165Thresholdat80图像特征提取汉字识别的困难
LargeinDataSetComplexinStructure1.ALargeSetofCharacters:English: 26lettersRussian: 32lettersGreek: 24lettersChinese: 3,000-7,000charactersareoftenusedStandardinP.O.China:6,763Thefirstlevel:3,755,Thesecondlevel:3,0087,000-10,000Chrs.arecollectedinsmalldictionaries70,000ChelargestcontemporarydictionaryInthelonghistoryofChina,thetotalnumberofChinesecharactersbecamelargerandlargerCellularFeatureExtractionPreprocessingNeuralTreeClassification008109212597191832302Input:Chinesecharacter“tree”......Features(Matrix)什么是特征?在模式识别中,特征指的是把两类或多类目标区别开来的一种描述方法。
Featuresarefunctionsofthemeasurementsperformedonaclassofobjectsthatenablethatclasstobedistinguishedfromotherclassesinthesamegeneralcategory.ExampleForpolygonsthenumberofverticesthenumberofsidesThelengthsofsidesthevaluesoftheanglesverticesideqPurposeoffeatureselection:
reducedimensionalityofrepresentation
minimizemeasurementextractioncosts
assessthepotentialperformanceofthepatternrecognitionsystemimprovesystem'sperformanceThreeingredientsinfeatureselection/extractionfeatureevaluationcriteriadimensionalityofthefeaturespaceoptimizationprocedure如何选择特征?(1)Aformal,number-crunchingapproach:forstatisticalPR.(2)Designfeatureswithsemanticcontents,someintuitivewaycorrespondtohumanperceptionoftheobjects:forstructuralPRExamples:(1)ProjectionFourierTransformFeaturesof750123467(2)
00555S00555ABHKVT={0,5}VN={S,A,B,H,K}P:S0A,A0B,B5H,H5K,K5
Featuresof7DensityFeaturesApatternimageisdividedintoNNsub-images
N=4N=4WWi(CellularFeature)N=4N=4Calculatethe
densityofeachsub-image
Howmanyimagepixelsineachsub-imageProjectionsInpatternrecognition,thetermprojectionusuallyreferstomappinganimageintoawaveform
Thevaluesofthewaveformarethesumsoftheimagepointsalong
particular
directionsAccordingtodirections,3projectionshavebeendeveloped:
HorizontalandverticalprojectionRingprojectionCentralprojectionProjectionsFormulaoftheprojection:istheprojectiondirection,Risareaofimage[z]isafunctionsuchthatxytProjectionsofsomeparticulardirections=0°,45°,90°and135°:tf(t)tf(t)Horizontalandvertical
Projections2-Dobjectisconvertedintotwo1-Dsignals
tf(t)tf(t)Orthogonaltransform(Fouriertransform)isusedtoobtainnumericalfeaturesFeatureVectorsVa
=
{va1,va2,...,van,}Vb
=
{vb1,vb2,...,vbn,}Vc
=
{vc1,vc2,...,vcn,}………………..Vz
=
{vz1,vz2,...,vzn,}Theprojectionisrotationsensitive779881047riCenterofgravityrk4911p(r)rp(ri)ri0rkRing-ProjectionAlgorithmThe1-DpatternobtainedfromtheRing-ProjectionalgorithmisinvarianttorotationsExtractionofrotation-invariantfeatures Ring-projection
Cumulativeangularfunction- Fourierdescriptor(CAF-FD) MomentInvariantCumulativeAngularFunction-
FourierDescriptors
(CAF-FD)Cumulativeangularfunction-Fourierdescriptor(CAF-FD)canproducerotation-invariantfeaturesWhentheobjectisrotatedwithdifferentangles,thefeaturearesameStep-1:Representapatternbyaboundary(closedcurve)Step-2:TracethecurveclockwiseovertheentireboundaryStep-3:Findtheangulardirection(t)ateachkeypointsStep-4:Findcumulativeangularfunction(t)Step-5:NormalizethecumulativeangularfunctionandproduceNCAF*(t)Step-6:ExpandNCAFintoFourierseriesAlgorithmofCAF-FDStep-1:
RepresentapatternbyaboundaryApatternisrepresentedbyaboundaryCumulativeangularfunction-Fourierdescriptor(CAF-FD)requireclosedcurvesAnypattern,thatcanbeapproximatedbyaboundarycurve,canbedescribedbyCAF-FDThecurveistracedclockwiseovertheentireboundaryAlgorithm:
(Boundarytracing)StartingpointThestartingpointofthecurveisarbitrarilychosenStep-2:
TracetheboundaryAlgorithm:(Boun
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国旗班班长申请书
- 夷陵区大学生创业项目
- 2024-2025人教版初中七下数学湖北专版-第十章-章末复习(四) 二元一次方程组【课件】
- 冬季混凝土蓬布施工方案
- 军人大学生创业项目有哪些
- 湖南省益阳市2024-2025学年七年级上学期期末语文试题(解析版)
- 竞选干部申请书
- 导游业务-2025全国导游业务知识模拟训练1
- DB61T-油菜苗情监测技术规范
- 初级公司信贷-初级银行从业资格《公司信贷》押题密卷1
- DB11∕T 1653-2019 供暖系统能耗指标体系
- 齿轮箱振动信号和故障诊断
- 小学生急救常识(课件)主题教育班会
- Part 7 Formal and Informal Styles课件
- 信息光学试卷试题及答案
- 文化差异及跨文化交际试题集
- PC-Ф800×800锤式破碎机结构设计
- 慢病患者随访服务记录表
- 双溪课程评量表完整优秀版
- 企业名字的81种数理含义
- 最新社工服务部组织架构
评论
0/150
提交评论