广东省广州市名校2023届初中数学毕业考试模拟冲刺卷含解析_第1页
广东省广州市名校2023届初中数学毕业考试模拟冲刺卷含解析_第2页
广东省广州市名校2023届初中数学毕业考试模拟冲刺卷含解析_第3页
广东省广州市名校2023届初中数学毕业考试模拟冲刺卷含解析_第4页
广东省广州市名校2023届初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣32.sin60°的值为()A. B. C. D.3.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.64.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=的图象恰好经过点A′、B,则k的值是()A.9 B. C. D.35.如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃ B.-2℃ C.+3℃ D.+2℃6.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是A. B. C. D.7.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.B.C.D.8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.9.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A. B. C. D.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.3二、填空题(共7小题,每小题3分,满分21分)11.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.12.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.13.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.14.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为______.百子回归15.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.16.的算术平方根是_______.17.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.三、解答题(共7小题,满分69分)18.(10分)已知:如图,在矩形纸片ABCD中,,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.的长为多少;求AE的长;在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.19.(5分)先化简,后求值:,其中.20.(8分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.21.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?22.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?23.(12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式

粗加工后销售

精加工后销售

每吨获利(元)

1000

2000

已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?24.(14分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G,GB=GC.(1)求证:四边形ABCD是矩形;(1)若△GEF的面积为1.①求四边形BCFE的面积;②四边形ABCD的面积为.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.2、B【解析】解:sin60°=.故选B.3、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.4、C【解析】

设B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根据相似三角形或锐角三角函数可求得A′(,),根据反比例函数性质k=xy建立方程求k.【详解】如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x轴于F,设B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x轴,A′G⊥x轴,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故选C.【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.5、A【解析】

一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.6、C【解析】

根据主视图的定义判断即可.【详解】解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.故选:.【点睛】此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.7、B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.考点:由实际问题抽象出一元二次方程.8、D【解析】

根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.9、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.10、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故选C.【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、8【解析】

根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.12、1【解析】

根据相似三角形的对应边的比相等列出比例式,计算即可.【详解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.13、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,点M是OP的中点,∴故答案为:【点睛】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出OP的长是解题关键.14、505【解析】

根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10,代入求解即可.【详解】1~100的总和为:=5050,

一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=5050÷10=505,故答案为505.【点睛】本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案15、100【解析】先在直角△ABE中利用三角函数求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如图,作AE⊥BC于点E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根据勾股定理得:AC=100.即此时王英同学离A地的距离是100米.故答案为100.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16、3【解析】

根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.17、1【解析】

解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.三、解答题(共7小题,满分69分)18、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为

.【解析】

(1)根据勾股定理解答即可;(2)设AE=x,根据全等三角形的性质和勾股定理解答即可;(1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.【详解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案为5;(2)设AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根据折叠的性质知:Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的长为;(1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,∴PF+PC=GF.过点F作FH⊥BC,交BC于点H,则有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根据勾股定理,得:GF,即PF+PC的最小值为.【点睛】本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.19、,【解析】分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.详解:原式=•﹣1=﹣=当x=+1时,原式==.点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.20、(1)30°;(2)20°;【解析】

(1)利用圆切线的性质求解;(2)连接OQ,利用圆的切线性质及角之间的关系求解。【详解】(1)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【点睛】此题主要考查圆的切线的性质及圆中集合问题的综合运等.21、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.【解析】

(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(1)设销售甲种商品a万件,依题意有:900a+600(8﹣a)≥5400,解得:a≥1.答:至少销售甲种商品1万件.【点睛】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.22、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.【解析】

根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.【详解】解:(1)∵直方图中,B组的人数为12,最多,∴男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴男生的身高的中位数在C组,故答案为B,C;(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有:40×5%=2(人),故答案为2;(3)600×+480×(25%+15%)=270+192=462(人).答:该校身高在165≤x<175之间的学生约有462人.【点睛】考查频数(率)分布直方图,频数(率)分布表,扇形统计图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论