七年级人教版数学知识点_第1页
七年级人教版数学知识点_第2页
七年级人教版数学知识点_第3页
七年级人教版数学知识点_第4页
七年级人教版数学知识点_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级人教版数学知识点七年级人教版数学学问点1

整式的加减

1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。

去括号法则:假如括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;假如括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都转变符号。

2、同类项:所含字母一样,并且一样字母的指数也一样的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.精确的找出同类项。

b.逆用安排律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在把握合并同类项时留意:

a.假如两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确推断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特别的代数式,可采纳“整体代入”进展计算。

七年级人教版数学学问点2

【概率】

一、大事:

1、大事分为必定大事、不行能大事、不确定大事。

2、必定大事:事先就能确定肯定会发生的大事。也就是指该大事每次肯定发生,不行能不发生,即发生的可能是100%(或1)。

3、不行能大事:事先就能确定肯定不会发生的大事。也就是指该大事每次都完全没有时机发生,即发生的可能性为零。

4、不确定大事:事先无法确定会不会发生的大事,也就是说该大事可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种大事发生的可能性相等。

1、概率:是反映大事发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=大事A可能消失的结果数/全部可能消失的结果数。

2、必定大事发生的概率为1,记作P(必定大事)=1;

3、不行能大事发生的概率为0,记作P(不行能大事)=0;

4、不确定大事发生的概率在0—1之间,记作0

三、几何概率

1、大事A发生的概率等于此大事A发生的可能结果所组成的面积(用SA表示)除以全部可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是由于大事发生在每个单位面积上的概率是一样的。

2、求几何概率:

(1)首先分析大事所占的面积与总面积的关系;

(2)然后计算出各局部的面积;

(3)最终代入公式求出几何概率。

七年级人教版数学学问点3

同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、一样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,留意符号。

3、一样字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是依据安排率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时留意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数一样。

4、混合运算中,留意运算挨次,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必需做到不重不漏。相乘时,要按肯定的挨次进展,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

平方差公式

1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

(a+b)?(a-b)的形式,然后看a2与b2是否简单计算。

七年级人教版数学学问点4

第一章有理数

1.1正数与负数

①正数:大于0的数叫正数。(依据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

留意:搞清相反意义的量:南北;东西;上下;左右;上升下降;凹凸;增长削减等

1.2有理数

1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:全部的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4、肯定值:(1)数轴上表示数a的点与原点的距离叫做数a的肯定值,记作|a|。从几何意义上讲,数的肯定值是两点间的距离。

(2)一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。两个负数,肯定值大的反而小。

1.3有理数的加减法

①有理数加法法则:

1、同号两数相加,取一样的符号,并把肯定值相加。

2、肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/安排律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把肯定值相除;

0除以任何一个不等于0的数,都得0。

1.5有理数的乘方

1、求n个一样因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最终加减;同级运算,从左到右进展;如有括号,先做括号内的运算,按

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论