版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UnderstandthedifferencebetweenInspectionandVariationReduction(SPCandProcessCapability)ReviewNewProcessCapability10-StepsandScorecardWhathelpdoyouneedfromDell? QuestionsandAnswersObjectivesProcessCapabilitySummitKirkChiDellInc.WWPBPIBusinessChampionDellBlackBeltASQCertifiedSixSigmaBlackBeltASQCertifiedQualityEngineer7/05/04TraditionalEconomicModelofQualityofConformanceTotalcostCostduetononconformanceCostofqualityassurance“optimallevel”ofquality100%Qualityimprovementbasedon
InspectionModernEconomicModelofQualityofConformanceTotalcostCostduetononconformanceCostofqualityassurance100%QualityimprovementbasedonVariationReduction(SPC/ProcessCapability)Non-ValueAddedoperationsresultin:HigherprocurementcostofproductsHigherprobabilityofdefectsImprovetheProcess
ToReduceNon-Value-AddedOperationsDellVLRR/PID/CNDHiddenCostsWhatisthedifferencebetweenqualitycontrolbasedonInspectionandVariationReduction?InspectionreferstothemanufacturingoperationsbasedonAttributeData(Pass/Fail).CurrentmanufacturingoperationsarefocusedmainlyonPass/Failinspections.Muchofvariabledataismeasured,butthedataisconvertedtoattributedataforPass/Failinspection.Ifyouinspect100%,willyourcustomerexperiencenofailure?Ifyouinspect100%,andinspectagain100%,andinspectagain100%,willyourcustomerexperiencenofailure?CanyouandDellachievethereductionofFIR(andVFIR)basedoninspectionqualitycontrol?Wewillworktogethertounderstandthefollowingpoints:Evenifyouinspect100%,yourcustomerwillstillexperiencefailuresInspectiondoesnotdetecttheprocessandproductmeanshift100%Inspectiondoesnotreducethevariationinyourprocess(andproduct)TraditionalInspectionViewLowerSpec
UpperSpecnoloss
nominaltoleranceTraditionalview:ThereisnofailureaslongasaparameteriswithinspecificationNewView(TaguchiLossFunction)
nominaltoleranceFailurerate,$LowerSpec
UpperSpecnolossNewView:Productsstillfailintimeevenifaparameteriswithinspec.Theprobabilityoffailureincreasesastheparametershiftsawayfromthemean
nominaltoleranceFailurerate,$LowerSpec
UpperSpecnolossWheredowewanttogo?CriticalProcessParameters(x)ProductAttribute(y(x))Metric(Y)VLRRSigmaLevel(Drivefor5)PAPB123YieldCpkMetricWhatMeasuredMetric(Y)SigmaLevel(Drivefor5)VIFIR+90DVFIRKeyMessage:
OnlythereductionofprocessandproductparametervariationswillleadtothereductionofVFIRHighCostofQualityLowestCostofQualityApproachtoProcessCapabilityIdentifyingCauseandEffectWhatisProcessCapability?ProcessCapabilityisthe“VoiceofProcess”tothe“VoiceofCustomer”.ProcessCapabilitystudyprovidesvaluableinsightonhowwellanexistingprocessisperformingwithregardstocustomerrequirements(specifications)whatneedstobedonetoimproveperformanceCapabilitystudiesenablemanufacturerstoimproveproductivity,reducecosts,andenhancetheirstrategicadvantageovercompetitors.ProcessStabilityBeforeCapabilityControlofaprocessmustbeachievedfirst,beforeanyattemptismadetomeasurecapabilityorestimatethepercentageofnonconformingproduct.Whenaprocessisstable,itisrepeatable,well-defined,andpredictable.YoucanpredicttheoutcomeonlyiftheprocessisstabletimePREDICTABLE?UNPREDECTIBLEProcessStability:
StatisticalProcessControl
StatisticalProcessControl(SPC)Aprocessoutputisconsideredstablewhenitconsistsofonlycommon-causevariation.SourcesofVariationinProductionProcessesMaterialsToolsOperatorsMethodsMeasurementInstrumentsHumanInspectionPerformanceEnvironmentMachinesINPUTSPROCESSOUTPUTSCommonCausesSpecialCausesTwoFundamentalManagementMistakesTreatingasaspecialcauseanyfault,complaint,mistake,breakdown,accidentorshortagewhenitactuallyisduetocommoncausesAttributingtocommoncausesanyfault,complaint,mistake,breakdown,accidentorshortagewhenitactuallyisduetoaspecialcauseControlChartFocusesattentionondetectingandmonitoringprocessvariationovertimeDistinguishesspecialfromcommoncausesofvariationServesasatoolforon-goingcontrolProvidesacommonlanguagefordiscussionprocessperformance*******CommonlyUsedControlChartsVariablesdatax-barandR-chartsx-barands-chartsChartsforindividuals(x-charts)AttributedataFor“defectives”(p-chart,np-chart)For“defects”(c-chart,u-chart)StatisticalProcessControl(SPC)AmethodologyformonitoringaprocesstoidentifyspecialcausesofvariationandsignaltheneedtotakecorrectiveactionwhenappropriateShiftinProcessAverageIdentifyingPotentialShiftsCyclesTrendQuantitativeComparisonof
TraditionalInspection
vs.
ControlChartReviewofVariable-DataControlChartsμμ+3σμ-3σμ+1σμ+2σμ-1σμ-2σμ
+/-1σ=68%μ+/-2σ=95%μ+/-3σ=99.73%IndividualmeasurementdistributionSPCControlLimits
μx-barμx-bar+3σX-barσx-bar=σ/UCL(UpperControlLimit)=X(doublebar)+3σX-barLCL(LowerControlLimit)=X(doublebar)-3σX-barSamplemeandistributionDistributionofXvs.DistributionofSampleMeans(X-bar)μμ+3σμ-3σμx-barμx-bar+3σX-barσx-bar=σ/IndividualmeasurementdistributionSamplemeandistribution
Thereisnorelationship.SpeclimitsaredeterminedbyengineeringbasedoncustomerrequirementsControllimitsaredeterminedbythecommon-causevariationintheprocessSpeclimitsaretypicallywiderthancontrollimitsSpecLimitvs.ControlLimitμμ+3σμ-3σControlChart:Example:ControlchartismonitoredbyUCLandLCL.(Note:USLandUCLdonothaveanyrelation.)USLLSLμx-barμx-bar+3σX-barUCLLCL*Ifσ=2forInspectionofindividualparts,σofsubgroupsizeof4samples=1.WhyControlChartsAreBetterThanInspection?μμ+3σμ-3σInspection:Example:Onepartischeckedeachhour.Onepartischeckedevery20.Partpassestheinspectionifthepartmeasurementiswithinspec.USLLSL*Assumption:speclimitlis+/-3sigma.μμ+3σμ-3σWhathappenstoInspectionifprocessmeanshifts3sigma?USLLSLAnythingaboveUSLarerejected.50%Becausehalfofthepiecesarestillwithinspec,thereis50%chanceofselectingsuchapartandmistakenlydecidingtocontinuerunningthismodifiedprocess.WhathappenstoControlChartifprocessmeanshifts3sigma?μx-barUCLLCL*Ifσ=2forInspectionofindividualparts,σofsubgroupsizeof4samples=1.99.865%Only0.135%ofthesubgroupaverageswouldfallwithinthecontrollimits.Conversely,99.865%willbeaboveUCL.Thereisalmost100%chancethisshiftintheprocessmeanwillbedetected.+3σshiftPowerofX-barCharttoDetectProcessChangesProducer’sRisk(Alphaerror):RejectingagoodpartAlphaerrormeasuretheprobabilityofrejectinggoodpartsinthefactory.Consumer’sRisk(Betaerror):Shippingbadparts
Betaerrormeasurestheprobabilityofshipping badpartstocustomers(1-β)Probabilityofdetectingaprocessshiftishigherwithlargern,i.e.Betaerror(consumer’srisk)decreasesasnincreases.ProcessCapabilityProcessCapabilityisdefinedastheabilityofaprocesstosatisfycustomerexpectations.Becausethespecificationlimitsareassumedtoreflectcustomerdesires,capabilitymeasuresaresaidtorelatethe“VoiceoftheProcess”tothe“VoiceoftheCustomer”ProcessCapabilityspecificationspecificationspecificationspecificationnaturalvariationnaturalvariation(a)(b)naturalvariationnaturalvariation(c)(d)ProcessCapabilityIndexCp=USL-LSL6sCpl,Cpu}USL-m3sCpl=m-LSL3sCpk=min{Cpu=
ProcessCapabilityProcessCapabilityIndex,CpCp>1.33,CapableCp=1.00–1.33,CapablewithtightcontrolCp<1.00,IncapableProcessVariationSpecificationsProcessCapabilityCp=1andCpk=1LSLTargetUSLLSLTargetUSLCp=2andCpk=1LSLTargetUSLCp=2andCpk=0NewProcessCapability10-Steps1.Characterizetheentiremanufacturingprocess.ProcessMaptheentiremanufacturingoperationsfromthebeginningtotheend.Laterwhenthecriticalparametersareidentified,locatewhichprocessesarealignedwiththecriticalparameters.Initiateanattributecontrolchart(P-chart)onRolling-Through-PutYield.
Ifasupplierissensitivetosharingtheyielddata,usethecodeddata.ThegoalistomonitorthestabilityofRTY.Thegoalofcontrolchartistoidentifyanyspecial-causes.Identifytherootcausesandtakecorrectiveactionsimmediatelyforanyout-of-controlpoints.DoesthesupplierhavethedocumentedprocessonP-chart,businessowner,andactionstepsforcorrectingout-of-controlpoints?AfterCPK’sofcriticalcharacteristicsareimproved,checkifthereisanyimpacttoRTY.3.Identifythecriticalparameters.Thisisthemostimportantstep.Criticalparameterscanbeidentifiedinmanydifferentways.Criticalparametersshouldbetiedtocustomerexperience.CriticalparameterscanbebothProcessandProductcharacteristics.Onewaytoidentifythecriticalparametersistoanalyzethenonconformingdefectives(fallouts)fromsuppliermanufacturingline,customermanufacturingline,andcustomerfields.Pareto,FMEAandCause-and-Effectdiagramarecommontoolstousefortheanalysis. 3.Identifythecriticalparameters(continued)
AnotherwayofidentifyingcriticalparametersistogetEngineering(DesignandNewProductIntroduction)engagedtoidentifykeycriticalProductcharacteristicsthatimpactcustomerexperience.IdentifyingbothProcessandProductcriticalparametersisdesirable.Identifyingthecriticalparametersfrombothdefectiveanalysisandengineeringinvolvementisdesirable.Reviewthespecificationsofthecriticalcharacteristics.Specificationsshouldbedefinedbasedoncustomerrequirements.Doesthesupplierhavetheprocesstodefinespecsbasedonengineeringandtoleranceanalyses?Ordoesthesupplierdefinesomespecsarbitrarily?Doesthesupplierhavetheprocesstotightenupspecsordotheymaintainthesamespecalways?Thevalueofprocesscapabilitywillbedependentonthespecifications.Quiteoften,veryunreasonablyhighCPKsarereportedbecauseofverywidespecranges.Ifthespecistoowide,productsmaypassthroughsupplier’smanufacturingprocess,butproductswillnotconformtocustomer’sexpectations.DefinetherequiredCPKsforthecriticalcharacteristics.
5.ConductMeasurementSystemAnalysis.ThegoalofrunningGageR&Ristocheckifthedatacollectionisnotcontaminatedbytheinaccuracyandnon-repeatabilityofthemeasuringdevicesandoperators.ImplementX-barandRvariablecontrolchartsonthecriticalparameters.Determinethesubgroupsamplesizeandthefrequencyofsampling.Preferablesubgroupsizeisn=10,inordertohave95%confidenceindetecting1.5sigmaprocessshift.However,ifthecircumstancesdonotallown=10,usesmallersubgroupsizewithmorefrequentsampling.UsetheBeta-errorcurvestofigureouttheprobabilityofdetectingtheprocessshift.Thegoalisnottocollectthedata.Thegoalistoidentifyspecialcausesusingthecontrolcharts.Onceaspecialcauseisidentified,rootcauseanalysisandcorrectiveactionneedtofollowupimmediately.6.ContinuedHavepassionforidentifyingspecialandcommoncausesanddriveactionsforthecontinuousimprovement.TheprocesscanbedeclaredtobeStableif25points(withsubgroupsamplesize)areplottedconsecutivelywithinthecontrollimits.DoesthesupplierhavethedocumentedprocessonX-barandRcharts,businessowner,andactionstepsforcorrectingout-of-controlpoints?Aftertheprocessisstable,calculateCPandCPK.UsethesameX-barandRcharttemplatetocalculateCPandCPK.Checkthenormalityofthedatafirst.WhatisCP?WhatisCPK?DoescalculatedCPKmeettherequiredvalue?
IfCpisnotsameasCPK,plantheactionstomakeCP=CPK. IfCPKisbelow1.33,plantheactionstoraiseCPKto1.33.
Usingtheattachedcontrolplanisoptional.Modifytheformattofityourneeds.ConductstatisticalcorrelationbetweensuppliercriticalparametersandDellqualitymetrics.
Doyoufindanycorrelations?
ConductthecorrelationanalysisbetweencriticalparametersandsupplierRTY.Arethereanycorrelations? Ifthereisnocorrelation,arewemissingtherightcriticalparameterthatimpactcustomerexperience? Workontheactionplansonidentifyingthecriticalparametersthatimpactcustomerexperience.
ImplementProcessCapabilitywithsub-tiersuppliers.Moveupstream.Identifythecoresuppliersthatimpactcustomerexperience.ImplementthesameProcessCapabilityprogramwiththecoresuppliers.
NewScoringCriteriaandScorecard
NewScorecardCriteria
Six-SigmaQualityEnsuringthatprocessvariationishalfthedesigntolerance(Cp=2.0)whileallowingthemeantoshiftasmuchas1.5standarddeviations.MotorolaDefinitionofSixSigmaDefectrategoalislessthan3.4DPPM(with1.5sigmashift)CPgoal=2SixSigmaMetricswith1.5SigmaDynamicShiftSixSigmaMetricswith1.5SigmaDynamicProcessShift(1-β)UsethisplottodeterminewhatsubgroupsizetousefordetectingtheprocessshiftCalculationofSystemLevelYieldCalculatebasedonlowerlimitCPKs.Ifyourfactoryhas:10processeswithCPK=1.33(31dppm)-20processeswithCPK=1(1350dppm)30processeswithCPK=0.83(6200dppm)Predictedsystemlevelyield=(1-.000031)10*(1-.00135)20*(1-.0062)30
=.99969*.97334*.8297=.807Whatifsupplier’sCPKishighandtheirmanufacturingfailurerateislow(i.e.highyield),butDelllineandfieldfailureratesarehigh?Thisshowsthatsupplier’sspecificationsaresettoowide.Therefore,nonconformingproducts(persupplier’srequirements)arepassingthroughsupplier’sfinaltests.HowisProcessCapabilityanalysisgoingtohelpLeadFreetransition?CancomparetheprocesscapabilityofbeforeandafterthetransitionPredictthefailureratebasedonspecchangeandtheexistingvariationBackUpSlidesFPY,RTY,andNAYFPY(YFP),FirstPassYieldorFTY(YFT),FirstTimeYieldGivestheprobabilityofgoingthroughonlyonestepintheprocesswithzerodefectsNumberofgoodunitsproducedthefirsttimethroughtheprocessdividedbythetotalnumberofunitsRTY(YRT)
orRolledThroughputYieldProbabilityofaunitpassingthrougheachstepofaprocessdefect-freeRTY=FPY1*FPY2*FPY3NAY(YNA),NormalizedAverageYieldUsedtocharacterizeaprocessusingtheznormaltablesUsedtocomparetwodifferentprocessesNAY=RTY1/numberofopportunitiesorstepsUseNAYtocompareprocesseswithdifferentnumbersofstepsoropportunitiesPChart–PlotFirstPassYieldFractions(AttributeData)ParetoAnalysistoIdentifyMajorDefectCategoriesWorkOn80%IssuesForgetUse80/20ruletofocusonmajorissuesCauseandEffectDiagramEnablesateamtofocusonthecontentofaproblem,notonthehistoryoftheproblemordifferingpersonalinterestsofteammembersCreatesasnapshotofcollectiveknowledgeandconsensusofateam;buildssupportforsolutionsFocusestheteamoncauses,notsymptomsEffectCauseFMEA–Whatisit?Failuremodeeffectsanalysis(FMEA):Atechniquetoidentify,define,andeliminateknownand/orpotentialfailures,problems,errors,andsoonfromthesystem,design,process,and/orservicebeforetheyreachthecustomerProvidedocumentationforsafetyandliabilityissuesFulfillcustomerandlegalrequirementsIdentify,prioritize,andreducepotentialfailuremodesManageandquantifyriskRankorderpotentialdesignandprocessdeficienciesEstablishprioritiesforcontainment,corrective,andpreventiveactionsImprovethereliabilityandsafetyofproductsandservicesSystem/DesignFMEAFocusonaproductpriortoreleaseDecreasedesigndeficienciesandincreasedesignrobustnessProcess/ServiceFMEAFocusonaseriesofsteps(productionoradministrative)IncreaseprocessrobustnessandidentifyhighriskfailurestepsandpointsofcontrolToolforprioritization,prevention,andcorrectionDefineFailureModesAdescriptionofthemannerinwhichafailureoccursAfunctionalrequirementexpressednegativelyAbsenceoffunction:“Doesnot…”DoesnotresolvecustomercomplaintDoesnotpaintfendersFunctiondonepoorly,inadequately,orincompletelyShouldbeexpresseddirectionallyorinactionabletermsIncompleteassemblyExcessivechromeProcessFunctionFailureModeEffectsofFailureSEVCausesofFailureOCCS*OCurrentControlsDETRPNActionsInstallFanFannotseatedproperlyMissingWronginvoiceDamagedHotsurfaceBentpinUndersizeCrackedbezelMeltedplasticShortedcircuitWrongcapacitorWarpedboardOpencircuitSurfacefinishDiscoloredCorrodedLoudfanTightinsertionCreasedScratchWrongdriverOutofpositionLooseDentLowvoltageEjectionpartialHighresistanceFrayedcableBrittleOmittedTightfitMissingpixelMisalignedIdentifyEffectsIdentifytheeffectofthefailuremodeonthefollowing:NextoperationDownstreamusersUltimatecustomerorconsumerRegulatoryagenciesProcessFunctionFailureModeEffectsofFailureSEVCausesofFailureOCCS*OCurrentControlsDETRPNActionsInstallFanFannotseatedproperlyFanfailstestExtrahandlingNoiseanddispatchIdentifyCausesIdentifythecausesofthefailuremode
UseCauseandEffectAnalysis:the4MEPmodelBesurethecausesaddressthefailuremodeStayon-level:avoidinappropriatedeepdivesProcessFunctionFailureModeEffectsofFailureSEVCausesofFailureOCCS*OCurrentControlsDETRPNActionsInstallFanFannotseatedproperlyFanfailstestExtrahandlingNoiseanddispatchContaminationPoortrainingImproperinstallationNotactilefeedbackDefineCurrentControlsAvoidwishfulthinking,especiallywithregardtocurrentcontrolsControlsexisttodetectcausesAuditsandinspectionsarenoteffectivecontrolmethodsInspectionsare,atbest,amethodofdetectionnotcontrolProcessFunctionFailureModeEffectsofFailureSEVCausesofFailureOCCS*OCurrentControlsDETRPNActionsInstallFanFannotseatedproperlyFanfailstestExtrahandlingNoiseanddispatchContaminationPoortrainingImproperinstallationNotactilefeedbackNoneBuildcertificationWI,BOMNoneStatisticalprocesscontrolchartSamplingAuditsandLogsInspectionsRunandtrendchartsPre-controlchartsCapabilitystudiesMilitarystandardsOperatingproceduresChecklistsSetupchecksSendaheadsLaboratorytestsPilotrunsSimulationTestingequipmentPrototypetestingVerificationtestingTolerancestudiesOn-linereliabilitytestingDocumentationFormulasPrintsandspecificationsMeasure:SeverityScaleDirectlyrelatedtofailuremodeandeffectsRatingsof“10and9”arereservedforhazardoussituationsandareobviouslyaddressedimmediately(specialcause)EffectScaleCriteriaHazardouswithoutwarning10Complianceissue,suddenfailureHazardouswithwarning9Safetyrelated,potentiallyhazardous,gradualfailureVeryhigh8Safe,Customerisverydissatisfied,lossofprimaryfunctionHigh7Customerdissatisfied,severeeffectonperformanceModerate6Customerdiscomfort,degradedperformanceLow5Customerannoyed,reducedperformanceVerylow4Customerannoyed,noticeablelossofperformanceMinor3Customerannoyed,slighteffectonperformanceVeryminor2Customermaybeannoyed,cosmeticNone1NoeffectMeasure:OccurrenceandDetectionScalesDirectlyrelatedtocauseOverthedesignlifeoftheproductbeforeanyadditionalprocesscontrolsareappliedDirectlyrelatedtocontrolsAssumeafailurehasoccurredtodeterminethedetectionratingThescaleisreversedRankProbabilityFailureRate10Certain>1in29Veryhigh1in38High1in87Moderatelyhigh1in206Medium1in805Low1in4004Slight1in2K3Veryslight1in15K2Remote1in150K1Impossible1in1.5MRankProbabilityDefectShipped10Never1in109Veryremote1in208Remote1in507Verylow1in1006Low1in2005Moderate1in5004Moderatelyhigh1in1K3High1in2K2Veryhigh1in5K1Certain1in10KMeasure:AssignRatingsandCalculateRiskSeverityisrelatedtofailuremodeandeffectsSeveritycanbeassignaratingbasedoneitherthefailuremode,theworsteffect,oreacheffectseparatelyJustmakesuretostayconsistentthroughouttheentireFMEAanalysisProcessFunctionFailureModeEffectsofFailureSEVCausesofFailureOCCS*OCurrentControlsDETRPNActionsInstallFanFannotseatedproperlyFanfailstestExtrahandlingNoiseanddispatch7Contamination321None10210Poortraining535Buildcertification9315Improperinstallation535WI,BOM7245Notactilefeedback642None10420MeasuresofRiskProcessFunctionFailureModeEffectsofFailureSEVCausesofFailureOCCS*OCurrentControlsDETRPNActionsInstallFanFannotseatedproperlyFanfailstestExtrahandlingNoiseanddispatch7Contamination321None10210Poortraining535Buildcertification9315Improperinstallation535WI,BOM7245Notactilefeedback642None10420MeasureofRiskExamplesCommentsSeverityAfireAninjuryAddresshighseverityimmediatelyS*O,Severity*OccurrenceLotsoffiresMultipleinjuriesOptional;especiallyusefulforDesignRiskPriorityNumber(RPN)Lotsoffiresandwecan’tfindthemWhatinjuries?TraditionalFMEAmeasureofriskApproachestoPrioritizeRiskAddressseverityratingsof9or10immediatelyFocusonhighestRPNfirstUseParetomethodCanbeappliedtobothS*OandRPNUseriskthresholdsRPNsgreaterthan50Definecategoriesofaction:critical/high/minorManufacturingProcessCapabilityNPIProductCapabilityManufacturingProcessIdentifyProduct
CriticalParametersduringDesignandQualificationphases.ImplementSPCandassessCp+CpkinNPIphase.UsetheinfotomakeMassProductDecision.IdentifyProcess
CriticalParametersthatareassociatedwithsupplieryieldfailures,Delllinefailures,andDellfieldfailuresduringmassproduction.ImplementSPCandCapabilityAnalysisonbothProductandProcesscriticalparametersNPIProductCapabilityIdentifyingbothProductandProcessCriticalCharacteristicsQualificationQualificationisdonewithsmallsamplesize NPIandMassProductionSourcesofVariationareadded:NewsubtiersuppliersareaddedNewmanufacturinglinesareaddedNewtoolsareaddedMoreoperatorsareaddedECN’sandPCN’saregeneratedIdentifycriticalproductparameters.ConductStatisticalanalysistodetermineifproductparametersarestable.DoesDesignsupportManufacturability?ContinuetomonitorProductCapabilityIdentifycriticalprocessparameters.ImproveProcessCapabilityImproveThroughputYieldsFromNewProductQualificationtoMassProductionExample:MONDEOCRITICALVARIABLESCharacteristicSpecificationEvaluation/MeasurementSamplingPlanControlMethodProcessCapabilityCommentsNoElectricalFunctionalityProduct1MainOscillatorFrequencyMotherboardAssembly14.318MHZ+/-50ppMFrequencyCounter5/100PCBAXbar&R*RefertoNote1Lessonslearned2VDDQ(2.6V)measurementsMotherboardAssembly2.6V+/-5%DVMorICT5/100PCBAXbar&R*RefertoNote1WillindicatepowersupplyandDCtoDCissues3FunctionalTestTotalTestTime(forafixedconfig)MotherboardAssemblyTBDSeconds+/-TBDFunctionalTestScript(timer)5/100PCBAXbar&R*RefertoNote2Systemwithproblemcanfinishtestbutwillretrymanytimes4BoardThicknessPCB0.062”+/-10%Micrometer5/100Xbar&R*RefertoNote15TraceWidthPCB0.005”+/-0.001”Opticalvenire5/100XBAR&R*RefertoNote16ImpedancemeasurementPCBSE:42,50,60,75DE:70,90,100TDR10forbuildof10020forbuildof1000+XBAR&R*RefertoNote1BesttomonitorresultperbuildfromPCBvendorDEFINE-MONDEOCRITICALVARIABLESCharacteristicSpecificationEvaluation/MeasurementSamplingPlanControlMethodProcessCapabilityCommentsNo.ElectricalFunctionalityProduct75VRippleVoltagePowerSupply70mVppOscilloscopeorEquivalent5/100Xbar&R*RefertoNote1Minimumload85VRippleVoltagePowerSupply70mVppOscilloscopeorEquivalent5/100Xbar&R*RefertoNote1Maximumload912VRailVoltagePowerSupply12V+/-5%DVMorICT5/100UnitsXbar&R*RefertoNote1MinimumLoad1012VRailVoltagePowerSupply12V+/-5%DVMorICT5/100UnitsXbar&R*RefertoNote1MaximumLoadCharacterizingProcessParametersandProductCharacteristicsVariability(Machine,Methods,Measurements,Materials,People,Environment)SupplierCustomerFeedback(Productivity,Timeliness,Financial,Quality)ProcessParametersProduct
CharacteristicsProcessParametersandProductCharacteristicsProductandProcessCriticalParametersOwner:Engineering,NPIProductCriticalParametersSpecificationsCpkRequirementDPPMestimationMB1)
2)
3)
Commodity#21)
2)
3)
Commodity#31)
2)
3)
Owner:Supplier,SQE,ManufacturingProcessCriticalParameterSpecificationsCpkRequirementDPPMestimationMB1)
2)
3)
Commodity#21)
2)
3)
Commodity#31)
2)
3)
ScienceofMeasurementAccuracy-closenessofagreementbetweenanobservedvalueandastandardPrecision-closenessofagreementbetweenrandomlyselectedindividualmeasurementsRepeatabilityandReproducibilityRepeatability(equipmentvariation)
–variationinmultiplemeasurementsbyanindividualusingthesameinstrument.Reproducibility(operatorvariation)-variationinthesamemeasuringinstrumentusedbydifferentindividualsRepeatabilityandReproducibilityStudiesQuantifyandevaluatethecapabilityofameasurementsystemSelectmoperatorsandnpartsCalibratethemeasuringinstrumentRandomlymeasureeachpartbyeachoperat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年招标代理服务协议
- 2024教育培训费用协议协议
- 2024年车展参展商协议范本
- 保健食品区域代理协议(2024年)
- DB11∕T 1602-2018 生物防治产品应用技术规程 白蜡吉丁肿腿蜂
- 2024装饰监理服务化协议
- 2024年专业物流服务协议全书修订
- 2024年度电力工程技术合作协议
- 2024年企业万股股权融资合作协议
- 文书模板-《承重架使用协议书》
- 2024届新结构“8+3+3”选填限时训练1~10(学生版)
- JTT791-2010 公路涵洞通道用波纹钢管(板)
- 2024年航空职业技能鉴定考试-无人机AOPA驾驶证考试(视距内驾驶员视距内驾驶员)笔试历年真题荟萃含答案
- 科研的思路与方法
- 山东联通公司招聘笔试题
- 2024年新智认知数字科技股份有限公司招聘笔试参考题库含答案解析
- 金属探测器检测记录
- 安全教育记录范文(25篇)
- 2024年供应链管理竞赛考试题库
- 三年级语文下册第二单元群文阅读教学设计
- 习思想教材配套练习题 第七章 社会主义现代化建设的教育、科技、人才战略
评论
0/150
提交评论