2022-2023学年江西省宜春市丰城中学八年级(下)开学数学试卷(含解析)_第1页
2022-2023学年江西省宜春市丰城中学八年级(下)开学数学试卷(含解析)_第2页
2022-2023学年江西省宜春市丰城中学八年级(下)开学数学试卷(含解析)_第3页
2022-2023学年江西省宜春市丰城中学八年级(下)开学数学试卷(含解析)_第4页
2022-2023学年江西省宜春市丰城中学八年级(下)开学数学试卷(含解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年江西省宜春市丰城中学八年级(下)开学数学试卷一.选择题(共6小题,每小题3分)1.下列计算正确的是()A.32=6 B.(﹣)3=﹣ C.(﹣2a2)2=2a4 D.+2=32.2、5、m是某三角形三边的长,则+等于()A.2m﹣10 B.10﹣2m C.10 D.43.如图,Rt△ABC中,∠B=90°,AB=4,BC=6,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为()A. B. C.3 D.4.若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A.互相平分 B.互相垂直 C.互相平分且相等 D.互相垂直且相等5.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为()A.2+2 B.5﹣ C.3﹣ D.+16.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1 B.+ C.2+1 D.2﹣二.填空题(共6小题,每小题3分)7.代数式有意义,则x的取值范围是.8.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了步路.(假设2步为1米)9.如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.10.如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC相交于点E、F,若AB=5,BC=6,OF=2,那么四边形ABFE的周长是.11.如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为.12.若a+6,当a,m,n均为正整数时,则的值为.三.解答题(共11小题,13-17题每题6分,18,19,20题每题8分,21,22题每题9分,23题12分)13.计算:(1)++(﹣);(2)+6.14.暑假中,小明到某海岛探宝,如图,他到达海岛登陆点后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,问登陆点到埋宝藏点的直线距离是多少?15.如图,在正方形网格中,每个小正方形的边长都是1,我们把每个小正方形的顶点叫做格点.(1)请在网格中作出平行四边形ABCD,使得边长为4和(顶点均在格点上).(2)求(1)平行四边形ABCD中较大的对角线的长是.16.已知x=+,y=﹣,求下列各式的值;(1)x2﹣xy+y2;(2).17.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)如果AD=7,DC=2,∠EBD=60°,那么当四边形BFCE为菱形时BE的长是多少?18.如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋千AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=m,BC=m,CD=m;(2)根据(1)中求得的数据,求秋千的长度.(3)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.19.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例如:(1)将分母有理化可得;(2)关于x的方程的解是.20.正方形ABCD的边长为6,点E是BC边上一动点,点F是CD边上一动点,过点E作AF的平行线,过点F作AE的平行线,两条线交于点G.(1)如图1,若BE=DF,求证:四边形AEGF是菱形;(2)如图2,在(1)小题条件下,若∠EAF=45°,求线段DF的长;(3)如图3,若点F运动到DF=2的位置,且∠EAF依然保持为45°,求四边形AEGF的面积.21.如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边长为a,较短的直角边长为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.22.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a=,求2a2﹣8a+1的值.他们是这样解答的:∵==2﹣∴a﹣2=﹣∴(a﹣2)2=3即a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据张兵小组的解题方法和过程,解决以下问题:(1)a=,则2a2﹣8a+1=.(2)若a=,求a4﹣4a3﹣4a+3的值.23.如图,在矩形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB之间往返运动,两个动点同时出发,当点P到达点D时停止(同时点Q也停止运动),设运动时间为t秒(t>0).(1)用含t的式子表示线段的长度:PD=cm,(2)当0<t<2.5时,运动时间t为秒时,以A、P、Q、B为顶点的四边形是矩形.(3)当5<t<10时,以P、D、Q、B为顶点的四边形有没可能是平行四边形?若有,请求出t;若没有,请说明理由.

参考答案一.选择题(共6小题,每小题3分)1.下列计算正确的是()A.32=6 B.(﹣)3=﹣ C.(﹣2a2)2=2a4 D.+2=3【分析】根据有理数的乘方、幂的乘方与积的乘方以及二次根式的加法运算法则计算即可.解:32=9,故A选项错误;(﹣)3=﹣,故B选项错误;(﹣2a2)2=4a4,故C选项错误;+2=3,故D选项正确.故选:D.【点评】本题考查二次根式的加减法、有理数的乘方、幂的乘方与积的乘方,熟练掌握基本运算法则是解答本题的关键.2.2、5、m是某三角形三边的长,则+等于()A.2m﹣10 B.10﹣2m C.10 D.4【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.解:∵2、5、m是某三角形三边的长,∴5﹣2<m<5+2,故3<m<7,∴+=m﹣3+7﹣m=4.故选:D.【点评】此题主要考查了三角形三边关系以及二次根式的化简,正确化简二次根式是解题关键.3.如图,Rt△ABC中,∠B=90°,AB=4,BC=6,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为()A. B. C.3 D.【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可求CN的长.解:∵D是AB中点,AB=4,∴AD=BD=2,∵将△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC﹣CN=6﹣DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6﹣DN)2+4,∴DN=,∴CN=DN=,故选:D.【点评】本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.4.若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A.互相平分 B.互相垂直 C.互相平分且相等 D.互相垂直且相等【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是正方形,那么邻边互相垂直且相等,选择即可,解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是正方形,即EF⊥FG,FE=FG,∴AC⊥BD,AC=BD,故选:D.【点评】本题考查了中点四边形,三角形中位线定理以及正方形的性质,解题的关键是构造三角形利用三角形的中位线定理解答.5.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为()A.2+2 B.5﹣ C.3﹣ D.+1【分析】方法一:如图,延长DA、BC交于点G,利用正方形性质和等边三角形性质可得:∠BAG=90°,AB=2,∠ABC=60°,运用解直角三角形可得AG=2,DG=2+2,再求得∠G=30°,根据直角三角形性质得出答案.方法二:过点E作EG⊥DF于点G,作EH⊥BC于点H,利用解直角三角形可得EH=1,BH=,再证明△BEH≌△DEG,可得DG=BH=,即可求得答案.解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.【点评】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定和性质、解直角三角形,题目的综合性很好,难度不大.6.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1 B.+ C.2+1 D.2﹣【分析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.二.填空题(共6小题,每小题3分)7.代数式有意义,则x的取值范围是x>﹣3【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.解:由题意得:x+3>0,解得x>﹣3,故答案为:x>﹣3.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.8.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了8步路.(假设2步为1米)【分析】在Rt△ABC中,利用勾股定理求出AB的长,根据2步为1米,即可得出少走的步数.解:∵∠C=90°,AC=6m,BC=8m,∴AB==10(m),则(8+6﹣10)×2=8,∴他们仅仅少走了8步,故答案为:8.【点评】本题考查了勾股定理的应用,熟练掌握勾股定理知识是解题的关键.9.如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.【分析】连接AC交BD于O,根据菱形的性质得到BD⊥AC,OB=OD=,OA=OC,根据勾股定理求出OA,证明△DEM∽△DOA,根据相似三角形的性质列出比例式,用含AM的代数式表示ME、NF,计算即可.解:连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=,OA=OC,由勾股定理得:OA===,∵ME⊥BD,AO⊥BD,∴ME∥AO,∴△DEM∽△DOA,∴=,即=,解得:ME=,同理可得:NF=,∴ME+NF=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、菱形的性质、勾股定理,掌握相似三角形的判定定理是解题的关键.10.如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC相交于点E、F,若AB=5,BC=6,OF=2,那么四边形ABFE的周长是15.【分析】先证明△AOE≌△COF,得出AE=CF,OE=OF=2,可求得EF=4,即可得出四边形ABFE的周长=EF+AE+AB+BF=EF+BC+AB,进而可求解.解:∵四边形ABCD是平行四边形,AB=5,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,OE=OF=2,∴EF=4,∴四边形EFCD的周长=EF+AE+AB+BF=EF+BC+AB=4+6+5=15.故答案为:15.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出对应边相等是解决问题的关键.11.如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为2.【分析】连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD﹣PD=6﹣x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.解:如图,连接AP,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,点E是BC的中点,∴BE=CE=AB=3,由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,,∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD﹣PD=6﹣x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6﹣x)2,解得x=2.则DP的长度为2.故答案为:2.【点评】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.12.若a+6,当a,m,n均为正整数时,则的值为2或2.【分析】通过完全平方公式去掉括号求出a=m2+3n2,2mn=6,根据a,m,n均为整数,分两种情况求出m,n,进一步求出a,从而求解.解:∵a+6,∴a+6=m2+2nm+3n2(a,m,n均为整数),∴a=m2+3n2,2mn=6,∴mn=3,①m=1,n=3,a=28,②m=3,n=1,a=12,故的值为2或2.【点评】本题主要考查了二次根式的混合运算,完全平方式,熟练掌握完全平方式的应用是解题关键.三.解答题(共11小题,13-17题每题6分,18,19,20题每题8分,21,22题每题9分,23题12分)13.计算:(1)++(﹣);(2)+6.【分析】(1)先化简,再进行加减运算即可;(2)先化简,再进行加法运算即可.解:(1)++(﹣)==3;(2)+6=+6×=2=5.【点评】本题主要考查二次根式的加减法,解答的关键是对相应的运算法则的掌握.14.暑假中,小明到某海岛探宝,如图,他到达海岛登陆点后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,问登陆点到埋宝藏点的直线距离是多少?【分析】通过行走的方向和距离得出对应的线段的长度,构造直角三角形利用勾股定理求解.解:过点B作BD⊥AC于点D,根据题意可知,AD=8﹣3+1=6千米,BD=2+6=8千米,在Rt△ADB中,由勾股定理得AB==10千米,答:登陆点到宝藏处的距离为10千米.【点评】本题考查了矩形的性质以及勾股定理的应用,解题的根据是结合图形,读懂题意,根据题意找到需要的数量关系,运用勾股定理求线段的长度.15.如图,在正方形网格中,每个小正方形的边长都是1,我们把每个小正方形的顶点叫做格点.(1)请在网格中作出平行四边形ABCD,使得边长为4和(顶点均在格点上).(2)求(1)平行四边形ABCD中较大的对角线的长是3.【分析】(1)根据要求作平行四边形即可;(2)由勾股定理可得答案.解:(1)如图:四边形ABCD即为所求;(2)如图:在Rt△ACE中,AC===3,故答案为:3.【点评】本题考查作图﹣复杂作图,解题的关键是掌握勾股定理及其应用.16.已知x=+,y=﹣,求下列各式的值;(1)x2﹣xy+y2;(2).【分析】由题意可得:x+y=2,xy=2,再把(1)(2)整理,代入相应的值运算即可.解:∵x=+,y=﹣,∴x+y=2,xy=2,∴(1)x2﹣xy+y2=x2+2xy+y2﹣3xy=(x+y)2﹣3xy=(2)2﹣3×2=28﹣6=22;(2)=====12.【点评】本题主要考查二次根式的化简求值,解答的关键是对相应的运算法则的掌握.17.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)如果AD=7,DC=2,∠EBD=60°,那么当四边形BFCE为菱形时BE的长是多少?【分析】(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.【解答】(1)证明:∵AB=DC,∴AC=DB,在△AEC和△DFB中,,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)解:当四边形BFCE是菱形时,BE=CE,∵AD=7,DC=2,AB=CD=2,∴BC=7﹣2﹣2=3,∵∠EBD=60°,∴BE=BC=3,∴当四边形BFCE是菱形时,BE的长是3.【点评】此题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.18.如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋千AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=1.6m,BC=3m,CD=1m;(2)根据(1)中求得的数据,求秋千的长度.(3)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送4m.【分析】(1)由题意得BF=1.6m,BC=3m,DE=0.6m,证四边形BCEF是矩形,得CE=BF=1.6m,则CD=CE﹣DE=1m;(2)设秋千的长度为xm,则AB=AD=xm,AC=AD﹣CD=(x﹣1)m,在Rt△ABC中,由勾股定理得出方程,解方程即可;(3)当BF=2.6m时,CE=2.6m,则CD=CE﹣DE=2m,得AC=AD﹣CD=3m,然后在Rt△ABC中,由勾股定理求出BC的长即可.解:(1)由题意得:BF=1.6m,BC=3m,DE=0.6m,∵BF⊥EF,AE⊥EF,BC⊥AE,∴四边形BCEF是矩形,∴CE=BF=1.6m,∴CD=CE﹣DE=1.6﹣0.6=1(m),故答案为:1.6,3,1;(2)∵BC⊥AC,∴∠ACB=90°,设秋千的长度为xm,则AB=AD=xm,AC=AD﹣CD=(x﹣1)m,在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即(x﹣1)2+32=x2,解得:x=5(m),即秋千的长度是5m;(3)当BF=2.6m时,CE=2.6m,∵DE=0.6m,∴CD=CE﹣DE=2.6﹣0.6=2(m),由(2)可知,AD=AB=5m,∴AC=AD﹣CD=5﹣2=3(m),在Rt△ABC中,由勾股定理得:BC===4(m),即需要将秋千AD往前推送4m,故答案为:4.【点评】此题考查了勾股定理的应用,正确理解题意,由勾股定理求出秋千的长度是解题的关键.19.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例如:(1)将分母有理化可得﹣1;(2)关于x的方程的解是.【分析】(1)根据材料进行分母有理化即可.(2)先分母有理化,再根据式子的规律化简,解方程即可求解.解:(1),故答案为:﹣1.(2),,,,,,,故答案为:.【点评】本题考查二次根式分母有理化,及其规律探索,解方程,掌握二次根式分母有理化,发现规律,解方程方法,找到有理化分母是解题关键.20.正方形ABCD的边长为6,点E是BC边上一动点,点F是CD边上一动点,过点E作AF的平行线,过点F作AE的平行线,两条线交于点G.(1)如图1,若BE=DF,求证:四边形AEGF是菱形;(2)如图2,在(1)小题条件下,若∠EAF=45°,求线段DF的长;(3)如图3,若点F运动到DF=2的位置,且∠EAF依然保持为45°,求四边形AEGF的面积.【分析】(1)先判定四边形AEGF是平行四边形,证明△ABE≌△ADF(SAS),由全等三角形的性质得出AE=AF,由菱形的判定可得出结论;(2)过点F作FH⊥AC于点H,证明△FHC是等腰直角三角形,得出FC=FH=DF,则可得出答案;(3)过点A作AE的垂线,交CD的延长线于点K,过点F作FP⊥AE于点P,证明△ABE≌△ADK(ASA),由全等三角形的性质得出BE=DK,AE=AK,证明△AEF≌△AKF(SAS),由全等三角形的性质得出EF=KF,求出BE=3,由勾股定理求出AE和AF的长,由平行四边形的面积公式可得出答案.【解答】(1)证明:∵EG∥AF,FG∥AE,∴四边形AEGF是平行四边形,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∴四边形AEGF是菱形;(2)解:过点F作FH⊥AC于点H,∵四边形AEGF为菱形,∴AC平分∠EAF,∴∠EAC=∠FAC=∠EAF=22.5°,又∵四边形ABCD是正方形,∴∠DAF+∠FAC=∠ACF=45°,∴∠DAF=∠FAC=22.5°,∵FD⊥AD于点D,FH⊥AC于点H,∴FH=FD,∵∠FHC=90°,∠ACF=45°,∴△FHC是等腰直角三角形,∴FC=FH=DF,∴DF+CF=DF+DF=DC=6,∴DF=6﹣6;(3)过点A作AE的垂线,交CD的延长线于点K,过点F作FP⊥AE于点P,∴∠APF=∠EAK=∠EAF+∠DAF+∠DAK=90°,∵∠EAF=45°,∴∠FAD+∠DAK=45°,∵四边形ABCD是正方形,∴∠B=∠ADC=∠BAD=90°,AB=AD,∴∠BAE+∠DAF=45°,∴∠BAE=∠DAK,又∵AB=AD,∠B=∠ADK=90°,∴△ABE≌△ADK(ASA),∴BE=DK,AE=AK,又∵AF=AF,∠EAF=∠KAF,AE=AK,∴△AEF≌△AKF(SAS),∴EF=KF,设EF=KF=DK+DF=x+2,又∵BE=x,EC=6﹣x,FC=6﹣2=4.在Rt△EFC中,∠C=90°,EF2=FC2+EC2,∴(x+2)2=(6﹣x)2+42,∴x=3,∴BE=3,∴AE===3,AF===2,∴等腰直角三角形AFP中,FP=AF==2,又∵四边形AEGF为平行四边形,∴S四边形AEGF=AE•PF=3×2=30.【点评】本题是四边形综合题,考查了正方形的性质,勾股定理,菱形的判定,等腰直角三角形的判定与性质以及全等三角形的判定和性质,判定四边形AEGF为菱形是解题的关键.21.如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边长为a,较短的直角边长为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【分析】(1)通过图中小正方形面积证明勾股定理;(2)可设AC=x,根据勾股定理列出方程可求x,再根据直角三角形面积公式计算即可求解;(3)根据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.解:(1)S小正方形=(a﹣b)2=a2﹣2ab+b2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,则a2+b2=c2.(2)24÷4=6,设AC=x,依题意有(x+3)2+32=(6﹣x)2,解得x=1,×(3+1)×3×4=×4×3×4=24.故该飞镖状图案的面积是24.(3)将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=40,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=.故答案为:.【点评】考查了勾股定理的证明,本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.(3)考查了图形面积关系,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=40求出是解决问题的关键.22.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a=,求2a2﹣8a+1的值.他们是这样解答的:∵==2﹣∴a﹣2=﹣∴(a﹣2)2=3即a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论