




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省滁州市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.下列函数为偶函数的是A.B.y=7x
C.y=2x+1
2.己知|x-3|<a的解集是{x|-3<x<9},则a=()A.-6B.6C.±6D.0
3.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)
4.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}
5.已知a∈(π,3/2π),cosα=-4/5,则tan(π/4-α)等于()A.7B.1/7C.-1/7D.-7
6.已知双曲线x2/a2-y2/b2=1的实轴长为2,离心率为2,则双曲线C的焦点坐标是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)
7.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.
B.
C.
D.
8.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3
B.-3/4
C.
D.2
9.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
10.若a>b.则下列各式正确的是A.-a>-b
B.C.D.
11.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
12.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50
13.已知,则点P(sina,tana)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限
14.A.2B.3C.4D.5
15.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8
16.若函数f(x)=x2+mx+1有两个不同的零点,则实数m的取值范围是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
17.A.{-3}
B.{3}
C.{-3,3}
D.
18.A.(0,4)
B.C.(-2,2)
D.
19.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]
20.sin750°=()A.-1/2
B.1/2
C.
D.
二、填空题(10题)21.算式的值是_____.
22.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
23.若事件A与事件互为对立事件,则_____.
24.若lgx>3,则x的取值范围为____.
25.
26.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
27.
28.函数f(x)=sin2x-cos2x的最小正周期是_____.
29.Ig0.01+log216=______.
30.等比数列中,a2=3,a6=6,则a4=_____.
三、计算题(10题)31.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
32.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
34.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
36.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
37.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
38.解不等式4<|1-3x|<7
39.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
40.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
四、简答题(10题)41.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
42.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
43.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。
44.由三个正数组成的等比数列,他们的倒数和是,求这三个数
45.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
46.证明:函数是奇函数
47.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
48.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
49.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
50.简化
五、解答题(10题)51.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
52.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.
53.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.
54.
55.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.
56.
57.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列
58.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.
59.已知函数(1)求f(x)的最小正周期;(2)求f(x)在区间[0,2π/3]上的最小值.
60.
六、证明题(2题)61.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
62.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
参考答案
1.A
2.B
3.A
4.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}
5.B三角函数的计算及恒等变换∵α∈(π,3π/2),cosα=-4/5,∴sinα=-3/5,故tanα=sinα/cosα=3/4,因此tanα(π/4-α)=1-tanα/(1+tanα)=1/7
6.B双曲线的定义.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴双曲线C的焦点坐标是(±2,0).
7.D
8.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.
9.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
10.C
11.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。
12.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.
13.D因为α为第二象限角,所以sinα大于0,tanα小于0,所以P在第四象限。
14.D向量的运算.因为四边形ABCD是平行四边形,
15.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2
16.C一元二次方程的根的判别以及一元二次不等式的解法.由题意知,一元二次方程x2+mx+1=0有两个不等实根,可得△>0,即m2-4>0,解得m>2或m<-2.故选C
17.C
18.A
19.B
20.B利用诱导公式化简求值∵sinθ=sin(k×360°+θ)(k∈Z)∴sin750°=sin(2×360°+30°)=sin30°=1/2.
21.11,因为,所以值为11。
22.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
23.1有对立事件的性质可知,
24.x>1000对数有意义的条件
25.2π/3
26.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
27.-1/2
28.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
29.2对数的运算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.
30.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
31.
32.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
33.
34.
35.
36.
37.
38.
39.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
40.
41.原式=
42.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
43.
44.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
45.
46.证明:∵∴则,此函数为奇函数
47.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
48.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
49.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
50.
51.
52.
53.(1)设等差数列{an}的公差为d由题
54.
55.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以当4<x<5时,h(x)>0,h(x)在(4,5]为增函数;当5<x<7,h(x)<0,h(x)在[5,7)为减函数,故当x=5时,函数h(x)在区间(4,7)内有极大值点,也是最大值点,即x=5时函数h(x)取得最大值50.所以当销售价格为5元/千克时,A系列每日所获得的利润最大.
56.
5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 61196-1-112:2025 EN Coaxial communication cables - Part 1-112: Electrical test methods - Test for return loss and voltage standing wave ratio
- 工程项目分包合同
- 绿色能源项目投资风险防控协议书
- 现代商业房屋买卖合同
- 产品供货合同范本(32篇)
- 离婚房产协议书
- 纯人工劳务分包合同
- 环保设备销售安装维修服务合同
- 合伙人股份转让协议书
- 居间合同服务协议书
- 教学课件-电力系统的MATLAB-SIMULINK仿真与应用(王晶)
- GB/T 26189.2-2024工作场所照明第2部分:室外作业场所的安全保障照明要求
- 新教科版一年级科学下册第一单元《身边的物体》全部课件(共7课时)
- 盐城江苏盐城市住房和城乡建设局直属事业单位市政府投资工程集中建设管理中心招聘4人笔试历年参考题库附带答案详解
- 医院教学秘书培训
- 2025江苏常州西太湖科技产业园管委会事业单位招聘8人历年高频重点提升(共500题)附带答案详解
- 2025年北京控股集团有限公司招聘笔试参考题库含答案解析
- 小学教室卫生管理
- 信息技术必修一《数据与计算》第三章第三节《数据分析报告与应用》说课稿
- 体育科学急救知识
- 工程项目建设流程
评论
0/150
提交评论