




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广东省韶关市普通高校高职单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22
2.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}
3.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
4.两个平面之间的距离是12cm,—条直线与他们相交成的60°角,则这条直线夹在两个平面之间的线段长为()A.cm
B.24cm
C.cm
D.cm
5.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0
6.A.2B.3C.4
7.函数和在同一直角坐标系内的图像可以是()A.
B.
C.
D.
8.在△ABC中,A=60°,|AB|=2,则边BC的长为()A.
B.7
C.
D.3
9.等比数列{an}中,若a2
=10,a3=20,则S5等于()A.165B.160C.155D.150
10.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
11.从1,2,3,4,5,6这6个数中任取两个数,则取出的两数都是偶数的概率是()A.1/3B.1/4C.1/5D.1/6
12.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1
B.f(x)=x0(x≠0)与f(x)=1
C.
D.f(x)=2x+l与f(t)=2t+1
13.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5
B.2/5
C.
D.
14.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
15.A.5B.6C.8D.10
16.函数f(x)=x2+2x-5,则f(x-1)等于()A.x2-2x-6
B.x2-2x-5
C.x2-6
D.x2-5
17.A.B.C.
18.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
19.若f(x)=4log2x+2,则f⑵+f⑷+f(8)=()A.12B.24C.30D.48
20.设集合,则A与B的关系是()A.
B.
C.
D.
二、填空题(20题)21.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
22.设lgx=a,则lg(1000x)=
。
23.
24.不等式(x-4)(x+5)>0的解集是
。
25.某机电班共有50名学生,任选一人是男生的概率为0.4,则这个班的男生共有
名。
26.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.
27.
28.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
29.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.
30.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.
31.若,则_____.
32.
33.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
34.若△ABC中,∠C=90°,,则=
。
35.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
36.
37.
38.已知函数,若f(x)=2,则x=_____.
39.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。
40.
三、计算题(5题)41.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
42.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
43.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
44.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
45.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、简答题(5题)46.已知集合求x,y的值
47.化简
48.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
49.已知求tan(a-2b)的值
50.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
五、解答题(5题)51.已知圆X2+y2=5与直线2x-y-m=0相交于不同的A,B两点,O为坐标原点.(1)求m的取值范围;(2)若OA丄OB,求实数m的值.
52.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
53.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
54.
55.A.90B.100C.145D.190
六、证明题(2题)56.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
57.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
参考答案
1.B程序框图的运算.模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+...+n≥210时n的最小自然数值,由S=n(n+1)/2≥210,解得n≥20,∴输出n的值为20.
2.B集合补集,交集的运算.因为CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.
3.C集合的运算.由已知条件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
4.A
5.A由于直线与2x-3y+5=0垂直,因此可以设直线方程为3x+2y+k=0,又直线L过点(-1,2),代入直线方程得3*(-1)+2*2+k=0,因此k=-1,所以直线方程为3x+2y-1=0。
6.B
7.D
8.C解三角形余弦定理,面积
9.C
10.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.
11.C本题主要考查随机事件及其概率.任取两数都是偶数,共有C32=3种取法,所有取法共有C62=15种,故概率为3/15=1/5.
12.D函数的定义域与对应关系.A、B中定义域不同;C中对应关系不同;D表示同一函数
13.D直线与椭圆的性质,离心率公式.直线l:x-2y+2=0与x轴的交点F1(-2,0),与y轴的交点B(0,1),由于椭圆的左焦点为F1,上顶点为B,则c=2,b=1,∴a=
14.A命题的条件.若x=-1则x2=1,若x2=1则x=±1,
15.A
16.Cf(x-1)=(x-1)2+2(x-1)-5=x2-2x+1+2x-2-5=x2-6,故选C。
17.C
18.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
19.C对数的计算∵f(2)=4㏒22+2=4×1+2=6,f(4)=424+2=4×2+2=10,f(8)=4log28+2=4×3+2=14,f(2)+f(4)+f(8)=6+10+14=30.
20.A
21.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
22.3+alg(1000x)=lg(1000)+lgx=3+a。
23.{x|1<=x<=2}
24.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
25.20男生人数为0.4×50=20人
26.
27.-4/5
28.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
29.B,
30.2n-1
31.27
32.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
33.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
34.0-16
35.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
36.2/5
37.{x|0<x<3}
38.
39.2/π。
40.(-∞,-2)∪(4,+∞)
41.
42.
43.
44.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
45.
46.
47.
48.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
49.
50.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西建筑节能工程质量检测合同(19篇)
- 规划设计策划管理制度汇编
- 广西房屋建筑和市政工程勘察招标文件范本(2020年试行版)
- 力争上游2025年国际金融理财师考试试题及答案
- 微生物检验技师证书考试冲刺试题演练
- 滚动练1~60参考答案
- 项目可行性分析考题解读试题及答案
- 发掘潜能的2025年证券从业资格试题及答案
- 微生物培养与鉴定过程试题及答案
- 解析注册会计师考试重点试题及答案
- 贷款利率浮动协议书
- 老年患者髋部骨折围手术期麻醉管理
- 高处坠落事故案例及事故预防安全培训
- 2023输煤专业考试题库全考点(含答案)
- 《最后一片叶子》课件 2024年高教版(2023)中职语文基础模块上册
- 23秋国家开放大学《视觉设计基础》形考任务1-5参考答案
- 河南观光小火车策划方案
- GMP-净化空调系统管理制度
- 《隧洞回填灌浆》课件
- 员工考核PK协议书
- 居住权协议书
评论
0/150
提交评论