信号的描述方法_第1页
信号的描述方法_第2页
信号的描述方法_第3页
信号的描述方法_第4页
信号的描述方法_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于信号的描述方法第1页,共92页,2023年,2月20日,星期三在工程和科学研究中,经常要对许多客观存在的物体或物理过程进行观测,就是为了获取有关研究对象状态与运动等特征方面的信息。被研究对象的信息量往往是非常丰富的,测试工作是按一定的目的和要求,获取信号中感兴趣的、有限的某些特定信息,而不是全部信息。为了达到测试目的,需要研究信号的各种描述方式,本章介绍信号基本的时域和频域描述方法。第2页,共92页,2023年,2月20日,星期三3.1信号的分类

信号按数学关系、取值特征、能量功率等,可以分为确定性信号和非确定性信号、连续信号和离散信号、能量信号和功率信号等。第3页,共92页,2023年,2月20日,星期三3.1.1分类方法一:确定性信号和随机信号第4页,共92页,2023年,2月20日,星期三1.确定性信号:能用明确的数学关系式或图像表达的信号称为确定性信号。

mx(t)0x(t)f0Atk第5页,共92页,2023年,2月20日,星期三周期信号:经过一段时间间隔重复出现的信号,无始无终(时域无穷)。典型的如正(余)弦信号。周期:满足上式的最小T值。频率:周期的倒数,f=1/T,单位:(Hz赫兹)圆频率/角频率:频率乘以2

f,即

=2

f=2

/T

实际应用中,n通常取为正整数。数学表达:信号的分类T0

=2/0=1/f0第6页,共92页,2023年,2月20日,星期三(a)周期信号之--------正弦信号:tT0Ax(t)0这种频率单一的正弦或余弦信号称为谐波信号。第7页,共92页,2023年,2月20日,星期三(如周期方波、周期三角波等)由多个乃至无穷多个频率成分(频率不同的谐波分量)叠加所组成,叠加后存在公共周期。x(t)=Asin0.5t+Asint+Asin2tx(t)t0(b)周期信号之------复杂周期信号第8页,共92页,2023年,2月20日,星期三(a)非周期信号之------准周期信号非周期信号能用明确的数学关系进行描述,但又不具有周期重复性的信号,称为非周期信号。它分为准周期信号和瞬态信号两类。也由多个频率成分叠加而成,但不存在公共周期(本质上不属于周期信号)。t第9页,共92页,2023年,2月20日,星期三是在有限时间段存在,或随着时间的增加而幅值衰减至零的信号,又称为瞬变非周期信号。x(t)t(b)非周期信号之------瞬态信号第10页,共92页,2023年,2月20日,星期三2.随机性信号:不能准确预测信号未来瞬时值,也无法用准确数学关系式来描述的信号,称为随机信号,也称不确定性信号。特点:非确定性信号。具有不重复性(在相同条件下,每次观测的结果都不一样)、不确定性、不可预估性。采用概率和统计的方法进行描述。t0x(t)第11页,共92页,2023年,2月20日,星期三

3.1.2分类法二:连续信号和离散信号若信号数学表示式中的独立变量取值是连续的,则称为连续信号。若独立变量取离散值,则称为离散信号。第12页,共92页,2023年,2月20日,星期三t0连续信号t0离散信号第13页,共92页,2023年,2月20日,星期三3.1.3分类法三:能量信号和功率信号

如周期信号、准周期信号、随机信号等。信号的瞬时功率:

信号能量:

能量(有限)信号:功率(有限)信号:

信号在有限区间(t1,t2)上的平均功率:

如各类瞬变信号。第14页,共92页,2023年,2月20日,星期三

信号的时域描述以时间为独立变量,描述信号随时间的变化特征,

反映信号幅值随时间变化的关系。波形图:时间为横坐标的幅值变化图。

优点:形象、直观。

缺点:不能明显揭示信号的内在结构(频率组成关系)。信号的描述分时域描述与频域描述两大类方法。

3.2信号的时域描述

第15页,共92页,2023年,2月20日,星期三

信号的频域描述应用傅里叶级数或傅里叶变换,对信号进行变换(分解),以频率为独立变量建立信号幅值、相位与频率的函数关系。频谱图:以频率为横坐标的幅值、相位变化图。幅值谱:幅值-频率图相位谱:相位-频率图频域描述抽取信号内在的频率组成及其幅值和相角的大小,描述更简练、深刻、方便。第16页,共92页,2023年,2月20日,星期三信号时域与频域描述的关系时域描述与频域描述是等价的,可以相互转换,两者蕴涵的信息相同;时域描述与频域描述各有用武之地;将信号从时域转换到频域称为频谱(specrtrum)分析;采用频谱图描述信号,需要同时给出幅值谱(amplitude

spectrun)和相位谱(phasespectrum)。第17页,共92页,2023年,2月20日,星期三3.2.1时域信号的合成与分解1.稳态分量与交变分量;信号可以分解为稳态分量与交变分量之和,如图所示。即

第18页,共92页,2023年,2月20日,星期三2.偶分量与奇分量;信号可以分解为偶分量与奇分量之和,如图所示。即偶分量关于纵轴对称,奇分量关于原点对称。信号分解为奇、偶分量之和第19页,共92页,2023年,2月20日,星期三3.实部分量与虚部分量;对于瞬时值为复数的信号可分解为实、虚两部分之和,即4.正交函数分量信号可以用正交函数集来表示,即各分量正交的条件为各分量的系数

满足正交条件的函数集有:三角函数、复指数函数等。第20页,共92页,2023年,2月20日,星期三常用统计参数:均值、均方值和方差。

均值(mean)反映信号的静态分量,即常值分量:均方值(meansquare)反映信号的能量或强度:3.2.2信号的统计特征参数方差(Variance)反映信号偏离均值的波动情况:三者关系第21页,共92页,2023年,2月20日,星期三狄里赫利(Dirichet)条件:信号(函数)在一个周期内,若存在间断点,则间断点的数目为有限个。信号(函数)在一个周期内,极大值和极小值数目为有限个。信号(函数)在一个周期内,信号绝对可积,即3.3.1周期信号的频域描述(1)三角函数展开式

(傅里叶级数法)

3.3信号的频域描述

第22页,共92页,2023年,2月20日,星期三其中则可以展开为傅里叶系数第23页,共92页,2023年,2月20日,星期三式中进一步,可以改写为信号的幅值谱信号的相位谱两者合称信号的频谱第24页,共92页,2023年,2月20日,星期三例:求方波信号的频域描述(傅里叶级数法)……T0T0T02T020tx(t)≤≤第25页,共92页,2023年,2月20日,星期三解:信号x(t)为奇函数,在一个周期内对奇函数积分结果为0,故有:第26页,共92页,2023年,2月20日,星期三,4A4A34A50A()03050003050()/2幅值谱相位谱第27页,共92页,2023年,2月20日,星期三x(t)0tT0周期方波信号的合成第28页,共92页,2023年,2月20日,星期三周期方波信号的时、频域描述

第29页,共92页,2023年,2月20日,星期三(2)复指数展开式所以:欧拉公式令:第30页,共92页,2023年,2月20日,星期三(n=0,±1,±2,…)信号的描述其中:故用统一的公式描述傅里叶级数的复数形式为:第31页,共92页,2023年,2月20日,星期三按实频谱和虚频谱形式

幅频谱和相频谱形式

幅频谱图:|Cn|-实频谱图:CnR

-虚频谱图:CnI

-相频谱图:

n-信号的描述第32页,共92页,2023年,2月20日,星期三例:画出余弦、正弦函数的实频及虚频谱图。

解:C-1=1/2,C1=1/2,Cn=0(n=0,2,

3,…)C-1=j/2,C1=-j/2,Cn=0(n=0,2,3,…

)第33页,共92页,2023年,2月20日,星期三1x(t)=cos0t0t1x(t)=sin0tt0CnR00-01/21/2CnR00-000-01/2-1/2CnICnI00-0|Cn|00-01/21/2|Cn|00-01/21/2An001An001单边幅频谱单边幅频谱双边幅频谱双边幅频谱第34页,共92页,2023年,2月20日,星期三几点结论复指数函数形式的频谱为双边谱(从-到+),三角函数形式的频谱为单边谱(从0到+)。两种频谱各谐波幅值之间存在如下关系:双边幅值谱为偶函数,双边相位谱为奇函数

一般周期函数的复指数傅里叶展开式的实频谱总是偶对称的,虚频谱总是奇对称的。

第35页,共92页,2023年,2月20日,星期三综上所述,周期信号频谱的特点如下:周期信号的频谱是离散谱;每个谱线只出现在基波频率的整数倍上,基波频率是诸分量频率的公约数;复杂周期信号展开成傅里叶级数后,在频域上是无限的。工程上常见的周期信号,其谐波幅值随谐波次数的增高而减小在频谱分析中没有必要取次数过高的谐波分量。信号的描述第36页,共92页,2023年,2月20日,星期三3.3.2非周期信号的频域描述

瞬变信号例参见下页频率之比为有理数的多个谐波分量,其叠加后由于有公共周期,是周期信号。当信号中各个频率比不是有理数时,则信号叠加后是准周期信号(属非周期信号)。一般非周期信号是指瞬变信号。第37页,共92页,2023年,2月20日,星期三非周期信号准周期信号信号中各简谐成分的频率比为无理数具有离散频谱瞬变信号在一定时间区间内存在或随时间的增长衰减至零准周期信号x(t)0tx(t)0t瞬变信号I0tx(t)瞬变信号II第38页,共92页,2023年,2月20日,星期三(1)傅里叶变换(非傅里叶级数)非周期信号可以看成是周期T0趋于无穷大的周期信号。

谱线无限靠近,变为连续谱。谱线长度:此时根据傅里叶级数展开所表示的谱线失去意义。信号存在就必然含有一定的能量,无论信号怎样分解,其所含总能量应当不变。无论周期增大到何种程度,信号能量沿频率域的分布特征总存在,即非周期信号的频谱依然存在。

第39页,共92页,2023年,2月20日,星期三设周期信号x(t)在一周期内的傅里叶级数表示为其中:

T0时,=

0

0,n0

,Cn0。但CnT0存在:信号的描述第40页,共92页,2023年,2月20日,星期三Cn表示n0(即)处的频谱值,而反映了单位频带的频谱值(0为谱线间隔),称为非周期信号的频谱密度(spectrumdensity)函数,简称频谱函数,它反映了信号能量沿频域的分布状况。若以的值为高、以间隔0为宽画一个小矩形,则该小矩形的面积等于=n0频率处的频谱值Cn(n0)。信号的描述第41页,共92页,2023年,2月20日,星期三Cn信号的描述第42页,共92页,2023年,2月20日,星期三傅里叶变换(FT)

傅里叶逆变换(IFT)

以代入得记为:x(t)X()FTIFT第43页,共92页,2023年,2月20日,星期三用实、虚频谱形式和幅、相频谱形式写为

非周期信号的幅频谱和周期信号的幅频谱很相似,但是两者量纲不同。为信号幅值的量纲。为信号单位频宽上的幅值,是频谱密度函数。工程测试中为方便,仍称为频谱。

第44页,共92页,2023年,2月20日,星期三例:矩形窗函数的频谱(属非周期、瞬态信号,区别方波)

W(f)中T

称为窗宽,

1-T/2T/2tw(t)0森克函数,通常称窗函数第45页,共92页,2023年,2月20日,星期三W(f)T01T1Tf3T3T(f)01T2T3T1T2T3T2T2TW(f)函数只有实部,没有虚部。sinc以2为周期并随的增加作衰减振荡。sinc是偶函数,在n(n=1,2,…)处其值为0。信号的描述第46页,共92页,2023年,2月20日,星期三非周期信号频谱的特点

基频无限小,包含了从

0〜的所有频率分量。频谱连续。|X()|与|Cn|量纲不同。|Cn|具有与原信号幅值相同的量纲,|X()|是单位频宽上的幅值。非周期信号频域描述的基础是傅里叶变换。第47页,共92页,2023年,2月20日,星期三(2)傅里叶变换的主要性质

积分x(t

t0)时移

频域微分x(kt)尺度变换

时域微分x(-f)X(t)对称性

X1(f)X2(f)x1(t)x2(t)频域卷积AX(f)+bY(f)ax(t)+by(t)线性叠加

X1(f)X2(f)x1(t)x2(t)时域卷积实奇函数虚奇函数X*(-f)x*(t)共轭虚偶函数虚偶函数X(-f)x(-t)翻转

虚奇函数实奇函数X(f

f0)频移

实偶函数实偶函数函数的奇偶虚实性频域时域性质频域时域性质第48页,共92页,2023年,2月20日,星期三频域分析:傅里叶变换,自变量为jw复频域分析:拉普拉斯变换,自变量为S=

+jwZ域分析:Z变换,自变量为z

频域、复频域、Z域的关系补充预备知识:第49页,共92页,2023年,2月20日,星期三奇偶虚实性

若x(t)为实偶函数,则ImX(f)=0,X(f)为实偶函数。若x(t)为实奇函数,则ReX(f)=0,X(f)为虚奇函数。若x(t)为虚偶函数,则ReX(f)=0,X(f)为虚偶函数。若x(t)为虚奇函数,则ImX(f)=0,X(f)为实奇函数。若x(t)为实函数,则ReX(f)=ReX(-f)ImX(f)=-ImX(-f)第50页,共92页,2023年,2月20日,星期三对称性:证明:

互换t和f从而:X(t)x(-f)第51页,共92页,2023年,2月20日,星期三尺度改变性

证明:(k>0)(k<0)综上所述时间尺度特性表明:信号在时域中压缩(k>1,变化速度加快)等效于在频域扩展(频带加宽);反之亦然。第52页,共92页,2023年,2月20日,星期三尺度改变性质举例000000第53页,共92页,2023年,2月20日,星期三证明:若t0为常数

则时移结果只改变信号的相频谱,不改变信号的幅频谱时移性第54页,共92页,2023年,2月20日,星期三(c)时移的时域矩形窗(d)图(c)对应的幅频和相频特性曲线

时移性质举例(a)时域矩形窗图(a)对应的幅频和相频特性曲线000000第55页,共92页,2023年,2月20日,星期三例:求三个窗函数的频谱。x(t)tT/2-T/2ττ1对于矩形窗函数w(t)问题描述为求w(t-τ)+w(t)+w(t+τ)的频谱根据时移性质第56页,共92页,2023年,2月20日,星期三频移特性

若f0为常数证明第57页,共92页,2023年,2月20日,星期三卷积特性

证明:函数x(t)与y(t)的卷积定义为同理可得第58页,共92页,2023年,2月20日,星期三微分特性证明:同理:第59页,共92页,2023年,2月20日,星期三傅里叶的两个最主要的贡献——周期信号都可表示为谐波关系的正弦信号的加权和——傅里叶的第一个主要论点非周期信号都可用正弦信号的加权积分表示

——傅里叶的第二个主要论点第60页,共92页,2023年,2月20日,星期三3.3.3几种典型信号的频谱单位脉冲函数(δ函数)的频谱1.δ函数定义且其面积(强度):

/201/t(t)0t(t)第61页,共92页,2023年,2月20日,星期三2.δ函数的性质

采样性筛选性

筛选结果为x(t)在发生δ函数位置的函数值(又称为采样值)

卷积性

第62页,共92页,2023年,2月20日,星期三函数与其他函数的卷积示例

(t)0t1x(t)0tA0tAx(t)(t)(tt0)0tx(t)0t0t(t+t0)(t-t0)x(t)(tt

0)-t0t0-t0t0第63页,共92页,2023年,2月20日,星期三3.δ函数的频谱

对δ(t)取傅里叶变换

δ函数具有等强度、无限宽广的频谱,这种频谱常称为“均匀谱”。

δ函数是偶函数,即,则利用对称、时移、频移性质,还可以得到以下傅里叶变换对0t(t)10f(f)1第64页,共92页,2023年,2月20日,星期三(各频率成分分别移相2ft0)(tt0)(f)(单位脉冲谱线)1(幅值为1的直流量)1(均匀频谱密度函数)(t)(单位瞬时脉冲)频域时域单位脉冲函数的时、频域关系第65页,共92页,2023年,2月20日,星期三矩形窗函数和常值函数的频谱

(1)矩形窗(rectanglewindow)函数的频谱第66页,共92页,2023年,2月20日,星期三W(f)T01T1Tf3T3T(f)01T2T3T1T2T3T2T2T1-T/2T/2tw(t)0第67页,共92页,2023年,2月20日,星期三(2)常值函数(又称直流量)的频谱

幅值为1的常值函数的频谱为f=0处的δ函数。当矩形窗函数的窗宽T趋于无穷时,矩形窗函数就成为常值函数,其对应的频域为δ函数。第68页,共92页,2023年,2月20日,星期三(3)单位阶跃函数的频谱单位阶跃函数可以看作是单边指数衰减函数a→0时的极限形式。≥第69页,共92页,2023年,2月20日,星期三单位阶跃函数及其频谱

01tx(t)0X(f)1-1第70页,共92页,2023年,2月20日,星期三(4)正余弦(sine/cosine)函数的频谱密度函数

正余弦函数不满足绝对可积条件,不能直接对之进行傅里叶变换。由欧拉公式知:第71页,共92页,2023年,2月20日,星期三1/21/20fReX(f)-f0f01/2-1/20fImX(f)-f0f00tsin2f0t0tcos2f0t第72页,共92页,2023年,2月20日,星期三(5)梳状(comb)函数(等间隔的周期单位脉冲序列)的频谱

Ts为周期;n为整数。梳状函数为周期函数。表示成傅里叶级数

(fs=1/Ts)因为在(-Ts

/2,Ts/2)区间内只有一个函数(t),故第73页,共92页,2023年,2月20日,星期三从而所以即梳状函数的频谱也为梳状函数,且其周期为原时域周期的倒数(1/Ts),脉冲强度为1/Tb(t,Ts)10Ts2Ts-Ts-2Ts......COMB(f,fs)1/Ts01Ts2Ts1Ts2Ts第74页,共92页,2023年,2月20日,星期三(6)指数(exponent)函数的频谱双边指数衰减函数

其傅里叶变换为

≥第75页,共92页,2023年,2月20日,星期三单边指数衰减函数及其频谱

第76页,共92页,2023年,2月20日,星期三(7)符号(sign)函数及其频谱符号函数的频谱符号函数可以看作是双边指数衰减函数当a→0时的极限形式,即:≥第77页,共92页,2023年,2月20日,星期三随机信号是非确定性信号随机信号具有不重复性(在相同条件下,每次观测的结果都不一样)、不确定性、不可预估性随机信号必须采用概率和统计的方法进行描述相关概念

随机现象:产生随机信号的物理现象

样本(sample)函数:随机现象的单个时间历程,即对随机信号按时间历程所作的各次长时间观测记录。记作xi(t),i表示第i次观测。

样本记录:在有限时间区间上观测得到的样本函数

随机过程:在相同试验条件下,随机现象可能产生的全体样本函数的集合(总体)。记作{x(t)},即{x(t)}={x1(t),x2(t),…,xi(t),…}3.4随机信号的频域描述

第78页,共92页,2023年,2月20日,星期三随机变量:随机过程在某一时刻t1的取值x(t1)是一个随机变量,随机变量一般定义在样本空间上。集合平均:一般而言,任何一个样本函数都无法恰当地代表随机过程{x(t)},随机过程在任何时刻的统计特性需用其样本函数的集合平均来描述。时间平均:按单个样本函数的时间历程进行平均计算。平稳与非平稳随机过程:平稳随机过程指其统计特性不随时间而变化,或者说,不随时间坐标原点的选取而变化;否则,则为非平稳随机过程。第79页,共92页,2023年,2月20日,星期三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论