2022-2023学年广东省广州市黄埔区数学八下期末达标检测模拟试题含解析_第1页
2022-2023学年广东省广州市黄埔区数学八下期末达标检测模拟试题含解析_第2页
2022-2023学年广东省广州市黄埔区数学八下期末达标检测模拟试题含解析_第3页
2022-2023学年广东省广州市黄埔区数学八下期末达标检测模拟试题含解析_第4页
2022-2023学年广东省广州市黄埔区数学八下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时2.菱形ABCD的对角线AC,BD相交于点O,若AC=6,菱形的周长为20,则对角线BD的长为()A.4 B.8 C.10 D.123.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为()A.y=-2x-2 B.y=-2x+2 C.y=-x-2 D.y=2x-24.下列根式中是最简二次根式的是A. B. C. D.5.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个 B.2个 C.3个 D.4个6.下列多项式中,能用平方差公式因式分解的是()A. B. C. D.7.计算的结果是()A.2 B.﹣2 C.±2 D.±48.如图,RtABC中,∠ACB=90°,CD是高,∠A=30°,CD=cm则AB的长为()A.4cm B.6cm C.8cm D.10cm9.如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为()A.x≥3

B.x≤3

C.x≤2

D.x≥210.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.12.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.13.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.14.将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线和x轴上,则点B2019的横坐标是______.15.若分式的值为0,则x=_________________.16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为________17.如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.18.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.三、解答题(共66分)19.(10分)如图①,四边形和四边形都是正方形,且,,正方形固定,将正方形绕点顺时针旋转角().(1)如图②,连接、,相交于点,请判断和是否相等?并说明理由;(2)如图②,连接,在旋转过程中,当为直角三角形时,请直接写出旋转角的度数;(3)如图③,点为边的中点,连接、、,在正方形的旋转过程中,的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.20.(6分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?21.(6分)城市到城市的铁路里程是300千米.若旅客从城市到城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差0.5小时,求高铁的速度.22.(8分)先化简:,然后从的范围内选取一个合适的整数作为的值代入求值.23.(8分)如图,在中,,,,,求的面积.24.(8分)解方程:x2﹣4x+3=1.25.(10分)(1)计算:(2)已知:如图,在△ABC中,AB=AC,点D、E、F分别是△ABC各边的中点,求证:四边形AEDF是菱形.26.(10分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图2、B【解析】

利用菱形的性质根据勾股定理求得BO的长,然后求得BD的长即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=6,∴AO=3,∵周长为20,∴AB=5,由勾股定理得:BO=4,∴BD=8,故选:B.【点睛】本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.3、A【解析】

先求出直线AB的解析式,再根据BD=DC计算出平移方式和距离,最后根据平移的性质求直线CD的解析式.【详解】设直线AB的解析式为y=kx+b,∵A(0,2)、点B(1,0)在直线AB上,∴2=b0=k+b,解得b=2∴直线AB的解析式为y=−2x+2;∵BD=DC,∴△BCD为等腰三角形又∵AD⊥BC,∴CO=BO(三线合一),∴C(-1,0)即B点向左平移两个单位为C,也就是直线AB向左平移两个单位得直线CD∴平移以后的函数解析式为:y=−2(x+2)+2,化简为y=-2x-2故选A.【点睛】本题考查一次函数图象与几何变换,解决本题要会根据图像上的点求一次函数解析式和利用平移的性质得出平移后函数解析式,能根据BD=DC计算出平移方向和距离是解决本题的关键.4、B【解析】

A.=,故此选项错误;B.是最简二次根式,故此选项正确;C.=3,故此选项错误;D.=,故此选项错误;故选B.考点:最简二次根式.5、C【解析】

根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【点睛】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.6、A【解析】

根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、-m2与n2符号相反,能运用平方差公式,故本选项正确;

B、有三项,不能运用平方差公式,故本选项错误;

C、m2与n2符号相同,不能运用平方差公式,故本选项错误;

D、-a2与-b2符号相同,不能运用平方差公式,故本选项错误.

故选:A.【点睛】本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.7、A【解析】

直接利用二次根式的性质化简即可求出答案.【详解】=2故选:A.【点睛】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.8、C【解析】

根据直角三角形的性质求出AC,得到BC=AB,根据勾股定理列式计算即可.【详解】在Rt△ADC中,∠A=30°,∴AC=1CD=4,在Rt△ABC中,∠A=30°,∴BC=AB,由勾股定理得,AB1=BC1+AC1,即AB1=(AB)1+(4)1,解得,AB=8(cm),故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、A【解析】

将点A(m,3)代入y=−x+4得,−m+4=3,解得,m=2,所以点A的坐标为(2,3),由图可知,不等式kx⩾−x+4的解集为x⩾2.故选D【点睛】本题考查了一次函数和不等式(组)的关系以及数形结合思想的应用.解决此类问题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10、A【解析】

根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.二、填空题(每小题3分,共24分)11、AC⊥BDAC=BDAC⊥BD且AC=BD【解析】

先证明四边形EFGH是平行四边形,(1)在已证平行四边形的基础上,要使所得四边形是矩形,则需要一个角是直角,故对角线应满足互相垂直(2)在已证平行四边形的基础上,要使所得四边形是菱形,则需要一组邻边相等,故对角线应满足相等(3)联立(1)(2),要使所得四边形是正方形,则需要对角线垂直且相等【详解】解:连接AC、BD.∵E、F、G、H分别是AB、BC、CD、DA边上的中点,∴EF∥AC,EF=AC,FG∥BD,FG=BD,GH∥AC,GH=AC,EH∥BD,EH=BD.∴EF∥HG,EF=GH,FG∥EH,FG=EH.∴四边形EFGH是平行四边形;(1)要使四边形EFGH是矩形,则需EF⊥FG,由(1)得,只需AC⊥BD;(2)要使四边形EFGH是菱形,则需EF=FG,由(1)得,只需AC=BD;(3)要使四边形EFGH是正方形,综合(1)和(2),则需AC⊥BD且AC=BD.故答案是:AC⊥BD;AC=BD;AC⊥BD且AC=BD【点睛】此题主要考查平行四边形,矩形,菱形以及正方形的判定条件12、【解析】

根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】∵四边形CDEF是正方形,AC=5,BC=12,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,解得:x=,故答案为.【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.13、y=﹣1x+1.【解析】

由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.14、.【解析】

利用一次函数图象上点的坐标特征及正方形的性质可得出点B1,B2,B3,B4,B5的坐标,根据点的坐标的变化可找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”,再代入n=2019即可得出结论.【详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1),点C1的坐标为(1,0).当x=1时,y=x+1=2,∴点A1的坐标为(1,2).∵A2B2C2C1为正方形,∴点B2的坐标为(3,2),点C2的坐标为(3,0).同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,∴点Bn的坐标为(2n-1,2n-1)(n为正整数),∴点B2019的坐标为(22019-1,22018).故答案为22019-1.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”是解题的关键.15、2【解析】

根据分式值为0的条件进行求解即可.【详解】由题意,得x-2=0,解得:x=2,故答案为:2.【点睛】本题考查了分式值为0的条件,熟练掌握“分式值为0时,分子为0用分母不为0”是解题的关键.16、1【解析】试题解析:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是1,即正方形A,B,C,D的面积的和为1.故答案为1.17、20【解析】

设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.【详解】设AB=CD=a,AD=BC=b∵S△ABE=6∴AB×BE=6∴BE=∴EC=b﹣∵S△EFC=2∴EC×CF=2∴CF=∴DF=a﹣∵S△ADF=5∴AD×DF=5∴b(a﹣)=10∴(ab)2﹣26ab+120=0∴ab=20或ab=6(不合题意舍去)∴矩形ABCD的面积为20故答案为20【点睛】此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.18、1.【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=2.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=2+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.故答案为1.三、解答题(共66分)19、(1)相等,理由见解析;(2)和;(3)存在,最大值为.【解析】

(1)由四边形ABCD和四边形CEFG都是正方形知BC=CD,CF=CE,∠BCD=∠GCE=90°,从而得∠BCG=∠DCE,证△BCG≌△DCE得BG=DE;

(2)分两种情况求解可得;

(3)由,知当点P到BD的距离最远时,△BDP的面积最大,作PH⊥BD,连接CH、CP,则PH≤CH+CP,当P、C、H三点共线时,PH最大,此时△BDP的面积最大,据此求解可得.【详解】(1)证明:相等∵四边形和四边形都是正方形,∴,,,∴,即,∴;∴BG=DE(2)如图1,∠ACG=90°时,旋转角;如图2,当∠ACG=90°时,旋转角;综上所述,旋转角的度数为45°或225°;(3)存在∵如图3,在正方形中,,∴,∴当点到的距离最远时,的面积最大,作,连接,,则当三点共线时,最大,此时的面积最大.∵,点为的中点,∴此时,,∴.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.20、50.【解析】

解:设该厂原来每天加工x个零件,由题意得:,解得x=50,经检验:x=50是原分式方程的解答:该厂原来每天加工50个零件.21、300千米/小时【解析】

设动车速度为千米/小时,则高铁速度为千米/小时,根据题意列出分式方程即可求解.【详解】设动车速度为千米/小时,则高铁速度为千米/小时,由题意,可列方程为.解得.经检验,.是原方程的根.所以高铁的速度为:千米/小时答:高铁的速度为300千米/小时.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系.22、2【解析】

根据分式的运算法则进行化简,然后根据分式有意义的条件找出a的值代入原式即可求出答案.【详解】解:∴取,原式=.【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于中等题型.23、42【解析】

根据勾股逆定理得出∠ADB=90°推出∠ADC=90°,再利用勾股定理求出DC的长度,利用三角形面积公式就可以求出的面积.【详解】证明:∵在中,,,,∴.∴.∴.∵,,∴.∴.【点睛】本题考查了勾股定理及勾股逆定理和三角形的面积公式,灵活运用勾股定理及勾股逆定理和三角形的面积公式是解题的关键.24、x1=1,x2=2.【解析】试题分析:本题考查了一元二次方程的解法,用十字相乘法分解因式求解即可.解:x2﹣4x+2=1(x﹣1)(x﹣2)=1x﹣1=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论