版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设(
)A.至少有一个内角是直角 B.至少有两个内角是直角C.至多有一个内角是直角 D.至多有两个内角是直角2.如图,一次图数y=﹣x+3与一次函数y=2x+m图象交于点(2,n),则关于x的不等式组的解集为()A.x>﹣2 B.x<3 C.﹣2<x<3 D.0<x<33.已知直线y=2x-b经过点(1,-1),则b的值为()A.3 B.-3 C.0 D.64.下列几组数中,能作为直角三角形三边长度的是()A.6,9,10 B.5,12,17 C.4,5,6 D.1,,5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)6.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A. B.2 C. D.37.如果分式有意义,那么的取值范围是()A. B.C. D.或8.如图,有一张长方形纸片,其中,.将纸片沿折叠,,若,折叠后重叠部分的面积为()A. B. C. D.9.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.120° B.90° C.60° D.30°10.在ABCD中,AB=3cm,BC=4cm,则ABCD的周长是()A.5cm B.7cm C.12cm D.14cm二、填空题(每小题3分,共24分)11.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为__________.12.若x+y﹣1=0,则x2+xy+y2﹣2=_____.13.若关于x的方程+=3的解为正数,则m的取值范围是______.14.如图,的面积为36,边cm,矩形DEFG的顶点D、G分别在AB、AC上,EF在BC上,若,则______cm.15.如图所示,一次函数y=kx+b的图象与x轴的交点为(-2,0①y的值随x的值的增大而增大;②b>0;③关于x的方程kx+b=0的解为x=-2.其中说法正确的有______(只写序号)16.已知直线经过点(-2,2),并且与直线平行,那么________.17.如图的直角三角形中未知边的长x=_______.18.将直线向上平移个单位后,可得到直线_______.三、解答题(共66分)19.(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.20.(6分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:应试者面试成绩笔试成绩才艺甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?21.(6分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛.现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差()甲771.2乙7.54.2(1)分别求表格中、、的值.(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.22.(8分)如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.(8分)先化简、再求值.,其中,.24.(8分)如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.(1)求证:四边形DBCE是平行四边形;(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.25.(10分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.(1)当x≥200时,求y与x之间的函数关系式(2)若小刚家10月份上网180小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?26.(10分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.2、C【解析】
先求出直线y=﹣x+1与x轴的交点坐标,然后根据函数特征,写出在x轴上,直线y=2x+m在直线y=﹣x+1上方所对应的自变量的范围.【详解】解:直线y=﹣x+1与x轴的交点坐标为(1,0),所以不等式组的解集为﹣2<x<1.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.3、A【解析】
将点(1,-1)代入y=2x-b,即可求解.【详解】解:将点(1,-1)代入y=2x-b得:-1=2-b,解得:b=3,故选:A.【点睛】本题考查的是一次函数点的坐标特征,将点的坐标代入函数表达式即可求解.4、D【解析】
要求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、,故不是直角三角形,故错误;B、,故不是直角三角形,故错误;C、,故不是直角三角形,故错误;D、故是直角三角形,故正确.故选:D.【点睛】本题考查的是勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、A【解析】
关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.6、C【解析】
证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【详解】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=DE=.故选C.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7、C【解析】
分式有意义,则分式的分母不为0,可得关于x的不等式,解不等式即得答案.【详解】解:要使分式有意义,则x+1≠0,解得,故选C.【点睛】本题考查了分式有意义的条件,属于基础题型,分式的分母不为0是分式有意义的前提条件.8、B【解析】
根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD的面积减去长方形AEFD的面积,即可得解.【详解】根据题意,得折叠后重叠部分的面积等于长方形ABCD的面积减去长方形AEFD的面积,∵,,∴故答案为B.【点睛】此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.9、B【解析】
根据直角三角形两锐角互余解答.【详解】由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:B.【点睛】此题考查直角三角形的性质,解题关键在于掌握其性质.10、D【解析】
因为平行四边形的两组对边分别相等,则平行四边形ABCD的周长为2(AB+BC),根据已知即可求出周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴平行四边形ABCD的周长为2(AB+BC)=2×7=14cm.故选:D.【点睛】此题主要考查平行四边的性质:平行四边形的两组对边分别相等.二、填空题(每小题3分,共24分)11、9【解析】设每轮传染中平均一个人传染的人数为x人,那么由题意可知(1+x)2=100,解得x=9或-11x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人12、【解析】将变形为,然后把已知条件变形后代入进行计算即可.解:原式=,把x+y-1变形为x+y=1代入,得原式=.“点睛”本题考查了代数式求值,正确的进行代数式的变形是解题的关键.13、m<且m≠【解析】
去分母得:x+m-3m=3(x-3)去括号得x+m-3m=3x-9移项,整理得:x=∵x>0,且x≠3∴>0,且≠3解得:m<且m≠.14、6【解析】
作AH⊥BC于H点,可得△ADG∽△ABC,△BDE∽△BAH,根据相似三角形对应边比例等于相似比可解题.【详解】解:作AH⊥BC于H点,∵四边形DEFG为矩形,
∴△ADG∽△ABC,△BDE∽△BAH,∵的面积为36,边cm∴AH=6∵EF=2DE,即DG=2DE解得:DE=3∴DG=6故答案为:6【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.15、①②③.【解析】
一次函数及其应用:用函数的观点看方程(组)或不等式.【详解】由图象得:①y的值随x的值的增大而增大;②b>0;③关于x的方程kx+b=0的解为x=-2.故答案为:①②③.【点睛】本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.16、1.【解析】根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.解:∵直线y=kx+b与直线y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=1.故答案为1.17、【解析】
根据勾股定理求解即可.【详解】x=.故答案为:.【点睛】本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.18、【解析】
根据“上加下减”原则进行解答即可.【详解】由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即故答案为:【点睛】本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.三、解答题(共66分)19、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.【解析】
(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.【点睛】本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.20、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.【解析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用【详解】(1),,∴∴排名顺序为:甲、丙、乙.(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定乙的成绩为:丙的成绩为:∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰∴丙会被录用.【点睛】此题考查加权平均数,掌握运算法则是解题关键21、(1)a=1,b=1,c=8;(2)甲,乙【解析】
(1)首先根据统计图中的信息,可得出乙的平均成绩a和众数c;根据统计图,将甲的成绩从小到大重新排列,即可得出中位数b;(2)根据甲乙的中位数、众数和方差,可以判定参赛情况.【详解】(1)a=×(3+6+4+8×3+1×2+9+10)=1.∵甲射击的成绩从小到大从新排列为:5、6、6、1、1、1、1、8、8、9,∴b=1.c=8.(2)甲的方差较大,说明甲的成绩波动较大,而且甲的成绩众数为1,故如果其他参赛选手的射击成绩都在1环左右,应该选甲参赛更适合;乙的中位数和众数都接近8,故如果其他参赛选手的射击成绩都在8环左右,应该选乙参赛更适合.【点睛】此题主要考查根据统计图获取信息,熟练掌握,即可解题.22、△BEF是直角三角形,理由见解析【解析】
因为正方形的四条边相等,边长为12,由E为DC的中点,得出DE和EC的长,AF=3DF,得出AF和DF的长,从而在Rt△ABF中、Rt△BCE中和Rt△DEF中,分别由勾股定理求得BF、BE和EF的长,得到BE2+EF2=BF2,再由勾股定理逆定理证得△BEF是直角三角形.【详解】解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=20°∵点E是CD的中点,∴DE=CE=CD=1.∵AF=3DF,∴DF=AD=3∴AF=3DF=2.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+31=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=2+31=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2∴△BEF是直角三角形.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理的逆定理.23、;【解析】
根据二次根式混合运算的法则化简,再将x,y的值代入计算即可.【详解】解:当,时【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.24、(1)见解析;(2)△ABC满足AB=BC时,四边形DBEA是矩形【解析】
(1)根据EC=BD,EC∥BD即可证明;(2)根据等腰三角形三线合一的性质得出∠BEA=90°,根据有一个角是直角的平行四边形是矩形推出即可.【详解】(1)∵E是AC中点,∴AE=EC,∵DB=AE,∴EC=BD又∵DB∥AC,∴四边形DECB是平行四边形;(2)△ABC满足AB=BC时,四边形DBEA是矩形,理由如下:∵DB=AE,又∵DB∥AC,∴四边形DBEA是平行四边形(一组对边平行且相等的四边形是平行四边形),∵AB=BC,E为AC中点,∴∠AEB=90°,∴平行四边形DBEA是矩形,即△ABC满足AB=BC时,四边形DBEA是矩形.【点睛】本题考查了矩形的判定,平行四边形的判定与性质,等腰三角形三线合一的性质,题目难度不大,熟练掌握平行四边形的判定与性质以及平行四边形与矩形的联系是解题的关键.25、(1)y=x-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南文理学院《计算机组成原理》2022-2023学年第一学期期末试卷
- 湖南农业大学《数据挖掘》2022-2023学年第一学期期末试卷
- 电大知识产权法第三次形成考题及答案
- 施工现场地下管线保护措施
- 新型干法水泥熟料生产线建设可行性研究报告
- 机械教学工作总结集合(31篇)
- 发展心理学知识
- 2024年中国鳗鱼肠市场调查研究报告
- 2024年中国长头手扶变型运输机市场调查研究报告
- 2024至2030年中国黄花梨面盆架行业投资前景及策略咨询研究报告
- 强化学习 课件 第5章 强化学习的实验环境与工具
- 经济学仿真模拟实训报告
- 零星项目维修服务方案设计
- 介入手术术后护理
- (高清版)DZT 0388-2021 矿区地下水监测规范
- 直播带货主播培训课件
- 新潮传媒行业分析
- 2023-2024学年高考英语专项真题练习-名词性从句(附解析)
- 消防工程投标方案(技术标)
- 企业IT数字化运维运营平台(总体架构、总体蓝图)建设方案
- T-SHNA 0003-2023 消化内镜诊疗前消化道准备
评论
0/150
提交评论