2022-2023学年河北省承德市丰宁满族自治县数学八年级第二学期期末达标测试试题含解析_第1页
2022-2023学年河北省承德市丰宁满族自治县数学八年级第二学期期末达标测试试题含解析_第2页
2022-2023学年河北省承德市丰宁满族自治县数学八年级第二学期期末达标测试试题含解析_第3页
2022-2023学年河北省承德市丰宁满族自治县数学八年级第二学期期末达标测试试题含解析_第4页
2022-2023学年河北省承德市丰宁满族自治县数学八年级第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是(

)A. B. C. D.2.估算在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和43.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是()A. B. C. D.5.在如图所示的计算程序中,y与x之间的函数关系式所对应的图象是()A. B.C. D.6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.39.39.39.3方差0.0250.0150.0350.023则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁7.下列因式分解正确的是()A.x3﹣x=x(x2﹣1) B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16 D.m2+4m+4=(m+2)28.分别以下列三条线段组成的三角形不是直角三角形的是()A.3、4、5 B.6、8、10 C.1、1、 D.6、7、89.如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7 B.6 C.5 D.410.如图,在正方形中,点是边上的一个动点(不与点,重合),的垂直平分线分别交,于点,若,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.将直线y=2x+3向下平移2个单位,得直线_____.12.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.13.函数的图象位于第________象限.14.已知一元二次方程,则根的判别式△=____________.15.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环25.14.74.55.1请你根据表中数据选一人参加比赛,最合适的人选是________.16.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.17.如图,在ABCD中,线段BE、CE分别平分∠ABC和∠BCD,若AB=5,BE=8,则CE的长度为________.18.请写出一个图形经过一、三象限的正比例函数的解析式.三、解答题(共66分)19.(10分)我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被2除余2,被5除余2,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被2除余2,同时能被5,7都整除的数,最小为1.再求被5除余2.同时能被2,7都整除的数,最小为62.最后求被7除余2,同时能被2,5都整除的数,最小为20.于是数1+62+20=222.就是一个所求的数.那么它减去或加上2,5,7的最小公倍数105的倍数,比如222﹣105=128,222+105=288…也是符合要求的数,所以符合要求的数有无限个,最小的是22.我们定义,一个自然数,若满足被2除余1,被2除余2,被5除余2,则称这个数是“魅力数”.(1)判断42是否是“魅力数”?请说明理由;(2)求出不大于100的所有的“魅力数”.20.(6分)如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形.(2)当点E从A点运动到C点时;①求证:∠DCG的大小始终不变;②若正方形ABCD的边长为2,则点G运动的路径长为.21.(6分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.22.(8分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.23.(8分)如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.24.(8分)化简求值:,其中m=﹣1.25.(10分)因式分解(1)(2)(3)(4)26.(10分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.2、C【解析】

原式化简后,估算即可确定出范围.【详解】解:原式=﹣+1=+1,∵,∴,即,则2﹣+1在2和3两个整数之间,故选:C.【点睛】本题考查了无理数的估算,能够正确化简,并熟知是解题的关键.3、C【解析】

在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合的图形叫做中心对称图形,根据这两点即可判断.【详解】解:A、是轴对称图形,不是中心对称图形.故A错误;B、是轴对称图形,不是中心对称图形.故B错误;C、是轴对称图形,也是中心对称图形.故C正确;D、不是轴对称图形,是中心对称图形.故D错误.故选:C.【点睛】本题主要考查的是轴对称图形和中心对称图形的定义,掌握这两个知识点是解题的关键.4、C【解析】

先利用直线y=x+2确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标得到答案.【详解】把P(m,4)代入y=x+2得:m+2=4,解得:m=2,即P点坐标为(2,4),所以二元一次方程组的解为.故选C.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.5、A【解析】

根据程序得到函数关系式,即可判断图像.【详解】解:根据程序框图可得y=﹣x×2+3=﹣2x+3,y=2x+3的图象与y轴的交点为(0,3),与x轴的交点为(1.5,0).故选:A.【点睛】此题主要考查一次函数的图像,解题的关键是根据程序得到函数解析式.6、B【解析】

根据方差的定义,方差越小数据越稳定,对题目进行分析即可得到答案.【详解】因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、D【解析】

逐项分解因式,即可作出判断.【详解】A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.8、D【解析】

根据勾股定理的逆定理可知,两较短边的平方和等于最长边的平方,逐项验证即可.【详解】A.,可组成直角三角形;B.,可组成直角三角形;C.,可组成直角三角形;D.,不能组成直角三角形.故选D.【点睛】本题考查勾股定理的逆定理,熟练掌握两较短边的平方和等于最长边的平方是解题的关键.9、B【解析】

根据平移的性质分别求出a、b的值,计算即可.【详解】解:点A的横坐标为-1,点C的横坐标为1,则线段AB先向右平移2个单位,∵点B的横坐标为1,∴点D的横坐标为3,即b=3,同理,a=3,∴a+b=3+3=6,故选:B.【点睛】本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.10、C【解析】

连接AF,EF,设DF=a,CF=6a,由勾股定理可求AF、EC的长,即可求出BE:EC的值.【详解】连接AF,EF,设DF=a,CF=6a,则BC=CD=7a,∴AF=,∵GF垂直平分AE,∴EF=AF=,∴EC==,∴BE=7a-,∴BE:CE=.故选C.【点睛】本题考查了正方形的性质,勾股定理,利用勾股定理表示出相关线段的长是解答本题的关键.二、填空题(每小题3分,共24分)11、y=2x+1.【解析】根据“左加右减,上加下减”的平移规律可得:将直线y=-2x+3先向下平移3个单位,得到直线y=-2x+3-2,即y=-2x+1.故答案是:y=﹣2x+1.12、①②③④⑤【解析】

由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由,可求出△FGC的面积,故此可对⑤做出判断.【详解】解:解:∵四边形ABCD是正方形,

∴AB=AD=DC=6,∠B=D=90°,

∵CD=2DE,

∴DE=1,

∵△ADE沿AE折叠得到△AFE,

∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,

∴AF=AB,

∵在Rt△ABG和Rt△AFG中,,

∴Rt△ABG≌Rt△AFG(HL).

∴①正确;

∵Rt△ABG≌Rt△AFG,

∴BG=FG,∠AGB=∠AGF.

设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.

在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.

∵CG=6-x,CE=4,EG=x+1,

∴(6-x)1+41=(x+1)1,解得:x=2.

∴BG=GF=CG=2.

∴②正确;

∵CG=GF,

∴∠CFG=∠FCG.

∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,

∴∠CFG+∠FCG=∠AGB+∠AGF.

∵∠AGB=∠AGF,∠CFG=∠FCG,

∴∠AGB=∠FCG.

∴AG∥CF.

∴③正确;

∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,

∴S△EGC=S△AFE;

∴④正确,

∵△CFG和△CEG中,分别把FG和GE看作底边,

则这两个三角形的高相同.

∴,

∵S△GCE=6,

∴S△CFG=×6=2.6,

∴⑤正确;

故答案为①②③④⑤.【点睛】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.13、二、四【解析】

根据反比例函数的性质:y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限,可得答案.【详解】解:反比例函数y=-的k=-6<0,

∴反比例函数y=-的图象位于第二、四象限,

故答案为二、四.【点睛】本题考查反比例函数的性质,解题关键是利用y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限判断.14、0【解析】

根据一元二次方程根的判别式,将本题中的a、b、c带入即可求出答案.【详解】解:∵一元二次方程,整理得:,可得:,∴根的判别式;故答案为0.【点睛】本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.15、丙【解析】分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.详解:∵=5.1,=4.7,=4.5,=5.1,∴=>>,∴最合适的人选是丙.故答案为:丙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、1【解析】

解:解如图所示:在RtABC中,BC=3,AC=5,由勾股定理可得:AB2+BC2=AC2设旗杆顶部距离底部AB=x米,则有32+x2=52,解得x=1故答案为:1.【点睛】本题考查勾股定理.17、6【解析】

根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到CE即可.【详解】解:∵BE和CE分别平分∠ABC和∠BCD,∴∠ABE=∠EBC,∠DCE=∠ECB,∵▱ABCD,∴AB∥CD,AB=CD=5,∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,∴△EBC是直角三角形,AD=BC=AE+ED=10根据勾股定理:CE=.故答案为6【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.18、y=x(答案不唯一)【解析】试题分析:设此正比例函数的解析式为y=kx(k≠1),∵此正比例函数的图象经过一、三象限,∴k>1.∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).三、解答题(共66分)19、(1)49不是“魅力数”,理由详见解析;(9)99、59、89.【解析】

(1)验证49是否满足“被9除余1,被9除余9,被5除余9”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;(9)根据样例,先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.于是数8+90+11=59,再用它减去或加上9,9,5的最小公倍数90的倍数得结果.【详解】解:(1)49不是“魅力数”.理由如下:∵49=14×9+1,∴49被9除余1,不余9,∴根据“魅力数”的定义知,49不是“魅力数”;(9)先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.∴数8+90+11=59是“魅力数”,∵9、9、5的最小公倍数为90,∴59﹣90=99也是“魅力数”,59+90=89也是“魅力数”,故不大于100的所有的“魅力数”有99、59、89三个数.【点睛】本题考查了数学文化问题,读懂题意,明确定义是解题的关键.20、(1)详见解析;(2)①详见解析;②【解析】

(1)要证明矩形DEFG为正方形,只需要证明它有一组临边(DE和EF)相等即可,而要证明两条线段相等,需证明它们所在的三角形全等,如下图本小题的关键是证明△EMF≌△END,∠MEF=∠NED可用等角的余角证明,EM=EN可用角平分线上的点到角两边距离相等,∠EMF和∠END为一组直角相等,所以可以用ASA证明它们全等;(2)此类题,前面的问题是给后面做铺垫,第一问已经证明四边形DEFG为正方形,结合第一问我们很容易发现并证明△ADE≌△CDG,从而得到∠DCG=∠CAD=45°;(3)当当E点在A处时,点G在C处;当E点在C处时,点G在AD的延长线上,并且AD=DG,以CD为边作正方形,我们会发现G点的运动轨迹刚好是正方形的对角线,它的长度等于.【详解】证明:(1)作EM⊥BC,EN⊥CD,∵四边形ABCD为正方形∴∠DCB=90°,∠ACB=∠ACD=45°又∵EM⊥BC,EN⊥CD,∴EM=EN(角平分线上的点到角两边距离相等),∠MEN=90°,∴∠MEF+∠NEF=90°,∵四边形DEFG为矩形,∴∠DEF=90°,∴∠NED+∠NEF=90°,∴∠MEF=∠NED,在△EMF和△END中∵∴△EMF≌△END,∴DE=DF,∴矩形DEFG为正方形;(2)①证明:∵正方形ABCD、DEFG∴AD=CD,ED=GD∵∠ADE+∠DEC=90°,∠CDG+∠EDC=90°∴∠ADE=∠CDG在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,ED=GD∴△ADE≌△CDG∴∠DCG=∠EAD=45°∴∠DCG的大小始终保持不变②以CD为边作正方形DCPQ,连接QC∴∠DCQ=45°,又∵∠DCG=45°∴C、G、Q在同一条直线上,当E点在A处时,点G在C处;当E点在C处时,点G在Q处,∴G点的运动轨迹为QC,∵正方形ABCD的边长为2所以QC=,即点G运动的路径长为【点睛】(1)本题考查正方形的判定定理,有一组临边相等的矩形为正方形,所以此题的关键是证明DE=DF,我们可通过化辅助线,证明△ADE≌△CDG;(2)①本题考查的是全等三角形的判定定理和性质定理,结合第一问通过观察图象,我们会发现△ADE≌△CDG,所以∠DCG=∠EAD=45°;②做这道题时,我们先构造模型,观察一下G点的起始位置和终点位置,结合①,我们会发现其实G点的运动轨迹刚好是正方形DCPQ的对角线,所以点G运动的路径长为.21、(1)详见解析;(2)144°;(3)众数为1.5小时、中位数为1.5小时.【解析】试题分析:(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°;(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.22、见解析【解析】整体分析:用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.证明:∵四边形ABCD是平行四边形,∴AB//CD.∵AE=CF,∴FD=EB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论