2022-2023学年黑龙江省鸡西中学数学八下期末考试模拟试题含解析_第1页
2022-2023学年黑龙江省鸡西中学数学八下期末考试模拟试题含解析_第2页
2022-2023学年黑龙江省鸡西中学数学八下期末考试模拟试题含解析_第3页
2022-2023学年黑龙江省鸡西中学数学八下期末考试模拟试题含解析_第4页
2022-2023学年黑龙江省鸡西中学数学八下期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是().A.5 B. C.或4 D.5或2.直线:为常数的图象如图,化简:A.3 B. C. D.53.若代数式有意义,则x应满足()A.x=0 B.x≠1 C.x≥﹣5 D.x≥﹣5且x≠14.如图,△AOB中,∠B=25°,将△AOB绕点O顺时针旋转60°,得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.85° B.75° C.95° D.105°5.若x1、x2是x2+x﹣1=0方程的两个不相等的实数根,则x1+x2﹣x1x2的值为()A.+1 B.﹣2 C.﹣2 D.06.用同一种规格的下列多边形瓷砖不能镶嵌成平面图案的是()A.三角形 B.正方形 C.正五边形 D.正六边形7.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是A.2,3,4 B.,, C.,,1 D.6,9,138.如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为()A. B.C. D.9.函数y=xx+3的自变量取值范围是(A.x≠0 B.x>﹣3 C.x≥﹣3且x≠0 D.x>﹣3且x≠010.下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)11.如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1712.化简的结果是()A.2 B. C.4 D.16二、填空题(每题4分,共24分)13.若方程的两根互为相反数,则________.14.如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.15.如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派__________________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)17.如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=_____.18.如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为.三、解答题(共78分)19.(8分)解分式方程:(1);(2).20.(8分)计算(+)﹣(+6)21.(8分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.22.(10分)以四边形ABCD的边AB,AD为边分别向外侧作等边三角形ABF和等边三角形ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时,如图①,EB和FD的数量关系是;(2)当四边形ABCD为矩形时,如图②,EB和FD具有怎样的数量关系?请加以证明;(3)如图③,四边形ABCD由正方形到矩形再到一般平行四边形的变化过程中,EB和FD具有怎样的数量关系?请直接写出结论,无需证明.23.(10分)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?24.(10分)如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.25.(12分)先化简,再求值:,其中a=626.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据折叠得到BF=B′F,根据相似三角形的性质得到或,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.【详解】解:∵△ABC沿EF折叠B和B′重合,

∴BF=B′F,

设BF=x,则CF=10-x,

∵当△B′FC∽△ABC,,∵AB=8,BC=10,

∴,解得:x=,

即:BF=,当△FB′C∽△ABC,,,解得:x=5,故BF=5或,故选:D.【点睛】本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.2、C【解析】

先从一次函数的图象判断出的正负,然后再化简原代数式.【详解】由直线为常数的图象可得:,所以,故选:C.【点睛】本题主要考查一次函数的图象,关键是根据二次根式的性质及其化简,绝对值的化简解答.3、D【解析】

根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】要使代数式有意义,必须有x+5≥0且x-1≠0,即x≥-5且x≠1,故选D.4、A【解析】

解:∵△AOB绕点O顺时针旋转60°,得到△A′OB′,∴∠B′=25°,∠BOB′=60°,∵∠A′CO=∠B′+∠BOB′,∴∠A′CO=25°+60°=85°,故选A.5、D【解析】

根据韦达定理知x1+x2=﹣1、x1x2=﹣1,代入计算可得.【详解】解:∵x1、x2是x2+x﹣1=0方程的两个不相等的实数根,∴x1+x2=﹣1、x1x2=﹣1,∴原式=﹣1﹣(﹣1)=0,故选:D.【点睛】本题主要考查根与系数的关系,解题的关键是掌握韦达定理和整体代入思想的运用.6、C【解析】

几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐项判断即可.【详解】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能镶嵌成平面图案;B、正方形的每个内角是90°,能整除360°,即能镶嵌成平面图案;C、正五边形每个内角是(5-2)×180°÷5=108°,不能整除360°,故不能镶嵌成平面图案;D、正六边形每个内角是(6-2)×180°÷6=120°,能整除360°,即能镶嵌成平面图案,故选:C.【点睛】本题考查平面镶嵌,围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角即能镶嵌成平面图案.7、C【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、,不能构成直角三角形,故本选项错误;B、,不能构成直角三角形,故本选项错误;C、,能构成直角三角形,故本选项正确;D、,不能构成直角三角形,故本选项错误.故选:C.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形是解答此题的关键.8、D【解析】

由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,

∴OA=OC,AD=BC,AB=CD=5,

∵AE=EB,OE=3,

∴BC=2OE=6,

∴▱ABCD的周长=2×(AB+BC)=1.

故选:D.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.9、B【解析】

由题意得:x+1>0,解得:x>-1.故选B.10、C【解析】

先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值11、C【解析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.12、A【解析】

根据算术平方根的定义计算即可.【详解】∵11=4,∴4的算术平方根是1,即=1.故选:A.【点睛】本题考查算术平方根的概念:一般地,如果一个正数x的平方等于a,即x1=a,那么这个正数x叫做a的算术平方根.记为.二、填空题(每题4分,共24分)13、【解析】

根据一元二次方程根与系数的关系即可求出答案.【详解】∵两根互为相反数,∴根据韦达定理得:m²-1=0,解得:m=1或m=-1当m=1时,方程是x²+1=0没有实数根当m=-1时,方程是x²-1=0有两个实数根所以m=-1故答案为:-1【点睛】本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.14、1或11【解析】

根据题意求得AD的值,再利用平行四边形性质分类讨论,即可解决问题.【详解】∵B(-3,0),C(9,0)∴BC=12∵点E是BC的中点∴BE=CE=6∵AD∥BC∴AD=5∴当PE=5时,以点P、A、D、E为顶点的四边形是平行四边形.分两种情况:当点P在点E左边时,PB=BE-PE=6-5=1;②当点P在点E右边时,PB=BE+PE=6+5=11综上所述,当PB的长为1或11时,以点P、A、D、E为顶点的四边形是平行四边形.【点睛】本题考查了平行四边形的性质,注意分类讨论思想的运用.15、163【解析】试题分析:【分析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°="60°."∴∠ABE=30°.∴在Rt△ABE中,AB=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=23×8=163.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质;3.平行的性质;4.含30度直角三角形的性质.16、甲【解析】

根据方差的定义,方差越小数据越稳定即可求解.【详解】解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,而1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故答案为甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17、6【解析】

通过证明△AEG∽△DGH,可得=,可设AE=2a,GD=3a,可求GE的长,由AB=AD,列出方程可求a的值,由勾股定理可求BH的长.【详解】解:∵将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,∴AB=AD=BC=CD,EG=BE,∠ABC=∠EGH=90°∵∠AGE+∠DGH=90°,∠AGE+∠AEG=90°∴∠AEG=∠DGH,且∠A=∠D=90°∴△AEG∽△DGH∴=∴设AE=2a,GD=3a,∴GE==∵AB=AD∴2a+=4+3a∴a=∴AB=AD=BC=CD=12,∴CH=CD﹣DH=12﹣6=6∴BH==6故答案为:6.【点睛】本题考查了翻折变换,正方形的性质,相似三角形的判定和性质,勾股定理,利用参数列出方程是本题的关键.18、8【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.考点:平行四边形的性质.三、解答题(共78分)19、(1);(2)原方程无解.【解析】

(1)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可;(2)先去分母,把分式方程变成整式方程,求出整式方程的解,最后进行检验即可。【详解】解:(1)方程两边都乘,得解这个方程,得经检验,是原方程的根.(2)解:方程两边都乘,得解这个方程,得经检验,是原方程的增根,原方程无解.【点睛】本题考查了解分式方程的应用,能把分式方程转化成整式方程是解此题的关键.20、【解析】

先去括号,同时把各根式化成最简二次根式,再合并同类二次根即可.【详解】原式=2+﹣﹣1=2+﹣1.【点睛】本题考查了二次根式的加减,能正确合并同类二次根式是解答此题的关键.21、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解析】

(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;

(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;

(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t

在矩形ABCD中,∠B=90°,AD∥BC,

当BQ=AP时,四边形ABQP为矩形,

∴t=6-t,得t=3

故当t=3s时,四边形ABQP为矩形.

(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形

∴当AQ=CQ时,四边形AQCP为菱形

即=6−t时,四边形AQCP为菱形,解得t=,

故当t=s时,四边形AQCP为菱形.

(3)当t=时,AQ=,CQ=,

则周长为:4AQ=4×=15cm

面积为:CQ•AB=×3=.【点睛】本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.22、(1)DF=BE;(2)EB=FD,证明见解析;(3)DF=BE【解析】

(1)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF(2)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF(3)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF.【详解】解:(1)∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△BAF和△AED是等边三角形∴AF=AB,AD=AE,∠FAB=∠EAD=60°∴AE=AD=AF=AB,∠FAD=∠EAB∴△ABE≌△ADF∴DF=BE故答案为DF=BE(2)EB=FD理由如下:∵△BAF和△AED是等边三角形∴AF=AB,AD=AE,∠FAB=∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD∴∠FAD=∠EAB又∵AF=AB,AE=AD∴△ABE≌△AFD∴DF=BE(3)BE=DF理由如下∵△BAF和△AED是等边三角形∴AF=AB,AD=AE,∠FAB=∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD∴∠FAD=∠EAB又∵AF=AB,AE=AD∴△ABE≌△AFD∴DF=BE【点睛】本题考查了四边形的综合题,等边三角形的性质,灵活运用等边三角形的性质是解决问题的关键.23、(1)证明见解析(2)添加AB=BC【解析】试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.理由:∵DB∥AE,DB=AE∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.考点:矩形的判定;平行四边形的判定与性质.24、(1)详见解析;(2)OA=OB,理由详见解析.【解析】试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.试题解析:(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论