2022-2023学年娄底市重点中学数学八年级第二学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年娄底市重点中学数学八年级第二学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年娄底市重点中学数学八年级第二学期期末学业质量监测模拟试题含解析_第3页
2022-2023学年娄底市重点中学数学八年级第二学期期末学业质量监测模拟试题含解析_第4页
2022-2023学年娄底市重点中学数学八年级第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一组数据、、、、、的众数是()A. B. C. D.2.下列命题正确的个数是()(1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形A.1 B.2 C.3 D.43.如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为()A.40° B.50° C.60° D.70°4.下列多边形中,不能够单独铺满地面的是()A.正三角形 B.正方形 C.正五边形 D.正六边形5.一组数据8,7,6,7,6,5,4,5,8,6的众数是()A.8 B.7 C.6 D.56.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.807.下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=1,S乙2=0.1,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,1,1,4,6的众数是1.8.如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD得△DEF,如果△ABC的周长是24cm,那么△DEF的周长是()A.6cm B.12cm C.18cm D.48cm9.对于反比例函数y=-的图象,下列说法不正确的是()A.经过点(1,-4) B.在第二、四象限 C.y随x的增大而增大 D.成中心对称10.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.-2 C.4 D.-411.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,C点的坐标为()A.(﹣1,2) B.(2,0) C.(2,1) D.(2,﹣1)12.已知x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案都不对二、填空题(每题4分,共24分)13.在一次射击训练中,某位选手五次射击的环数分别为6,9,8,8,9,则这位选手五次射击环数的方差为______.14.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.15.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=_____.16.三角形的两边长分别为3和6,第三边的长是方程-6x+8=0的解,则此三角形的第三边长是_____17.如图,在▱ABCD中,E是BC边的中点,F是对角线AC的中点,若EF=5,则DC的长为_____.18.若实数x,y满足+(y+)2=0,则yx的值为________.三、解答题(共78分)19.(8分)已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A.C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F,当点E落在线段CD上时(如图),(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;20.(8分)已知如图,反比例函数的图象与一次函数的图象交于点,点.(1)求,的值;(2)求的面积;(3)直接写出时的取值范围.21.(8分)如图,已知一次函数y=x−3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为___,k的值为___;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y⩾−2时,请直接写出自变量x的取值范围。22.(10分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE,DF.(1)试判断四边形AEDF的形状,并证明你的结论;(2)若∠BAC=60°,AE=6,求四边形AEDF的面积;(3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.23.(10分)家乐商场销售某种衬衣,每件进价100元,售价160元,平均每天能售出30件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1元,其销量就增加3件.商场想要使这种衬衣的销售利润平均每天达到3600元,每件衬衣应降价多少元?24.(10分)某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?25.(12分)如图,直线l过点P1,2,且l与x,y轴的正半轴分別交于点A、B两点,O(1)当OA=OB时,求直线l的方程;(2)当点P1,2恰好为线段AB的中点时,求直线l26.(1)因式分解:;(2)计算:

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据众数的定义进行解答即可.【详解】解:6出现了2次,出现的次数最多,则众数是6;故选:D.【点睛】此题考查了众数,众数是一组数据中出现次数最多的数.2、C【解析】

根据完全平方式、正六边形、平行四边形的判定判断即可【详解】(1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;(2)正六边形的每个内角都等于相邻外角的2倍,是真命题;(3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;(4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;故选C【点睛】此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键3、D【解析】

根据翻折不变性即可解决问题;【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠FEC,由翻折不变性可知:∠FEA=∠FEC,∵∠1=70°,∴∠FEA=70°,故选D.【点睛】本题考查了矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题.4、C【解析】

由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.5、C【解析】

根据众数的含义:在一组数据中出现次数最多的数叫做这组数据的众数.【详解】在这组数据中6出现3次,次数最多,所以众数为6,故选:C.【点睛】本题考查众数的定义,学生们熟练掌握即可解答.6、C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.7、D【解析】

根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.【详解】A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用抽样调查的调查方式,故本选项错误;、甲乙两种麦种连续3年的平均亩产量的方差为:,,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;、.一组数据:3,2,1,1,4,6的众数是1,故本选项正确;.故选.【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.8、B【解析】

利用三角形的中位线定理可以得到:DE=AC,EF=AB,DF=BC,则△DEF的周长是△ABC的周长的一半,据此即可求解.【详解】∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AB)=×24=12cm,故选B.【点睛】本题考查了三角形的中位线定理,正确根据三角形中位线定理证得:△DEF的周长是△ABC的周长的一半是关键.9、C【解析】

根据反比例函数的性质用排除法解答.【详解】A、把点(1,-4)代入反比例函数y=-得:1×(-4)=-4,故A选项正确;B、∵k=-4<0,∴图象在第二、四象限,故B选项正确;C、在同一象限内,y随x的增大而增大,故C选项不正确;D、反比例函数y=-的图象关于点O成中心对称,故D选项正确.故选:C.【点睛】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.此题的易错点是在探讨函数增减性时没有注意应是在同一象限内.10、B【解析】

直接根据正比例函数的性质和待定系数法求解即可.【详解】把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B.【点睛】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.11、D【解析】

利用网格特点和旋转的性质画出正方形ABCD绕D点顺时针方向旋转90°后所得的正方形CEFD,则可得到C点的对应点的坐标.【详解】如图,正方形ABCD绕D点顺时针方向旋转90°后得到正方形CEFD,则C点旋转后的对应点为F(2,﹣1),故选D.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12、B【解析】

先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,4-x=0,y-8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=1,所以,三角形的周长为1.故选B.【点睛】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.二、填空题(每题4分,共24分)13、1.1【解析】分析:先求出平均数,再运用方差公式S1=[(x1-)1+(x1-)1+…+(xn-)1],代入数据求出即可.详解:解:五次射击的平均成绩为=(6+9+8+8+9)=8,方差S1=[(6﹣8)1+(9﹣8)1+(8﹣8)1+(8﹣8)1+(9﹣8)1]=1.1.故答案为1.1.点睛:

本题考查了方差的定义.一般地设n个数据,x1,x1,…xn的平均数为,则方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、.【解析】

解:画树状图得:∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,∴能组成分式的概率是故答案为.【点睛】此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15、1.【解析】试题分析:利用平均数的定义,列出方程即可求解.解:由题意知,3,a,4,6,7的平均数是1,则=1,∴a=21﹣3﹣4﹣6﹣7=1.故答案为1.点评:本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.16、1【解析】

求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=1时,看看是否符合三角形三边关系定理;求出即可.【详解】解:x2-6x+8=0,

(x-2)(x-1)=0,

x-2=0,x-1=0,

x1=2,x2=1,

当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,

当x=1时,符合三角形的三边关系定理,此三角形的第三边长是1,

故答案为:1.【点睛】本题考查三角形的三边关系定理和解一元二次方程等知识点,关键是掌握三角形的三边关系定理,三角形的两边之和大于第三边.17、1【解析】

根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB=1即可.【详解】解:∵E是BC边的中点,F是对角线AC的中点,∴EF是△ABC的中位线,∴AB=2EF=1,又∵四边形ABCD是平行四边形,∴AB=CD,∴CD=1.故答案为:1【点睛】本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.18、3【解析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答【详解】根据题意得:解得:则yx=()=3故答案为:3【点睛】此题考查非负数的性质,掌握运算法则是解题关键三、解答题(共78分)19、(1)见解析;(2)【解析】

(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.【详解】(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB即∠BPE=90°,∴∠BPG=90°−∠GPE=∠EPH.在△PGB和△PHE中,.∴△PGB≌△PHE(ASA),∴PB=PE.②连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°.∵PE⊥PB即∠BPE=90°,∴∠PBO=90∘−∠BPO=∠EPF.∵EF⊥PC即∠PFE=90°,∴∠BOP=∠PFE.在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90∘,∴BC=OB.∵BC=1,∴OB=,∴PF=.∴点PP在运动过程中,PF的长度不变,值为.【点睛】此题考查正方形的性质,全等三角形的判定与性质,四边形综合题,解题关键在于作辅助线20、(1)m=-2,n=2;(2);(3)的取值范围是x≤-2或0<x≤1.【解析】

(1)将A,B两点分别代入一次函数解析式,即可求出两点坐标.(2)将△AOB分割为S△AOB=S△BOC+S△AOC,列式求出即可.(3)根据函数的图像和交点坐标即可求得.【详解】(1)把A点坐标(1,n)代入y2=x+3,得n=2;把B点坐标(m,-1)代入y2=x+3,得m=-2.∴m=-2,n=2.(2)如图,当y=0时,x+3=0,∴C(-3,0),∴S△AOB=S△BOC+S△AOC=×3×1+×3×2=.(3)当时的取值范围是x≤-2或0<x≤1.【点睛】本题考查了一次函数和反比例函数的交点问题,涉及三角形的面积计算,一次函数的图像等知识点.21、(1)n=3,k=12;(2)(4+,3);(3)x⩽−6或x>0.【解析】

(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比例函数的性质即可得到当y≥-2时,自变量x的取值范围.【详解】(1)把点A(4,n)代入一次函数y=x−3,可得n=×4−3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x−3与x轴相交于点B,∴x−3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE−OB=4−2=2,在Rt△ABE中,AB=,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=−2时,−2=,解得x=−6.故当y⩾−2时,自变量x的取值范围是x⩽−6或x>0.【点睛】此题考查反比例函数综合题,解题关键在于作辅助线22、(1)四边形AEDF是菱形,证明见详解;(2);(3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形.【解析】

(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)先证明△AEF是等边三角形,然后根据菱形的面积公式即可得到结论;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【详解】解:如图,(1)四边形AEDF是菱形,证明如下:∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°,∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形,又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵四边形AEDF为菱形,∴AE=AF,∵∠BAC=60°,∴△AEF是等边三角形,∠1=30°,∴AO=,EF=AE=6,∴AD=,∴四边形AEDF的面积=AD•EF=××6=;(3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).【点睛】本题主要考查了菱形的判定和性质和正方形的判定,关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.23、1元【解析】

设每件衬衣降价x元,根据商场平均每天盈利数=每件的盈利×售出件数列出方程求解即可.【详解】解:设每件衬衣降价x元,依题意,得:(160﹣100﹣x)(1+3x)=3600,整理,得:x2﹣50x+600=0,解得:x1=20,x2=1,∵为了尽快减少库存,∴x=1.答:每件衬衣应降价1元.【点睛】本题考查一元二次方程的应用,商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.24、(1)见解析(2)8万元,8万元,8.12万元(3)384人【解析】

试题分析:(1)根据扇形中各部分所占的百分比的和是1,即可求得3万元的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论