2022-2023学年山东省烟台市招远市金岭镇邵家初级中学八年级数学第二学期期末综合测试试题含解析_第1页
2022-2023学年山东省烟台市招远市金岭镇邵家初级中学八年级数学第二学期期末综合测试试题含解析_第2页
2022-2023学年山东省烟台市招远市金岭镇邵家初级中学八年级数学第二学期期末综合测试试题含解析_第3页
2022-2023学年山东省烟台市招远市金岭镇邵家初级中学八年级数学第二学期期末综合测试试题含解析_第4页
2022-2023学年山东省烟台市招远市金岭镇邵家初级中学八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.如图,在平行四边形ABCD中,用直尺和圆规作的∠BAD平分线交BC于点E,若AE=8,AB=5,则BF的长为()A.4 B.5 C.6 D.83.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为()A.= B.= C.= D.=4.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+25.若一次函数y=kx+17的图象经过点(-3,2),则k的值为()A.-6B.6C.-5D.56.如图,在中,,,,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为()A.1 B.2 C.2.5 D.47.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7 B.2()7 C.2()8 D.()98.下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是()A.68 B.43 C.42 D.409.函数y=的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限10.王芳同学周末去新华书店购买资料,右图表示她离家的距离(y)与时间(x)之间的函数图象.若用黑点表示王芳家的位置,则王芳走的路线可能是A. B. C. D.二、填空题(每小题3分,共24分)11.如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.12.如图,小芳作出了边长为1的第1个正△A1B1C1.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第个正△AnBnCn的边长是___________.13.一组数据3,2,4,5,2的众数是______.14.如图,平行四边形ABCD中,AB=2cm,BC=12cm,点P在边BC上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A运动,速度为每秒1cm,连接PQ,设运动时间为秒.当=______时,四边形ABPQ为平行四边形;15.已知a+b=4,ab=2,则的值等于_____.16.以下是小明化简分式的过程.解:原式①②③④(1)小明的解答过程在第_______步开始出错;(2)请你帮助小明写出正确的解答过程,并计算当时分式的值.17.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)

4

3

2

1

0

人数

2

4

2

1

1

则这10名学生周末利用网络进行学均时间是小时.18.如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,直线y=-x+b与矩形ABCD的边有公共点,则实数b的取值范围是________.三、解答题(共66分)19.(10分)如图,正方形ABCD,AB=4,点M是边BC的中点,点E是边AB上的一个动点,作EG⊥AM交AM于点G,EG的延长线交线段CD于点F.(1)如图①,当点E与点B重合时,求证:BM=CF;(2)设BE=x,梯形AEFD的面积为y,求y与x的函数解析式,并写出定义域.20.(6分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.21.(6分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在BC边所在直线上,PE=PB.(1)如图1,当点E在线段BC上时,求证:①PE=PD,②PE⊥PD.简析:由正方形的性质,图1中有三对全等的三角形,即△ABC≌△ADC,_______≌_______,和_______≌______,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD=90°,故在四边形PECD中,只需证∠PDC+∠PEC=______即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.(2)如图2,当点E在线段BC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)若AB=1,当△PBE是等边三角形时,请直接写出PB的长.22.(8分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.23.(8分)如图是某港口在某天从0时到12时的水位情况变化曲线.(1)在这一问题中,自变量是什么?(2)大约在什么时间水位最深,最深是多少?(3)大约在什么时间段水位是随着时间推移不断上涨的?24.(8分)以四边形ABCD的边AB,AD为边分别向外侧作等边三角形ABF和等边三角形ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时,如图①,EB和FD的数量关系是;(2)当四边形ABCD为矩形时,如图②,EB和FD具有怎样的数量关系?请加以证明;(3)如图③,四边形ABCD由正方形到矩形再到一般平行四边形的变化过程中,EB和FD具有怎样的数量关系?请直接写出结论,无需证明.25.(10分)已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.26.(10分)已知.将他们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=1.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:根据平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例,依次分析各选项即得结果.A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.考点:本题考查了平行投影特点点评:解答本题的关键是掌握平行投影的特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.2、C【解析】

根据尺规作图可得四边形ABEF为菱形,故可根据勾股定理即可求解.【详解】连接EF,设AE、BF交于O点,∵AE平分∠BAD,∴∠BAE=∠FAE,又AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,故AF=BE,又AF∥BE,∴四边形ABEF是菱形,故AE⊥BF,∵AE=8,AB=5∴BF=2BO=故选C.【点睛】此题主要考查菱形的判定与性质,解题的关键是熟知特殊平行四边形的判定与性质及勾股定理的应用.3、C【解析】

根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【详解】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:C.【点睛】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.4、B【解析】试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换5、D【解析】

由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.【详解】由一次函数y=kx+17的图象经过点(-3,2),故将x=-3,y=2代入一次函数解析式得:2=-3k+17,解得:k=1,则k的值为1.故选D.【点睛】此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.6、A【解析】

作CG⊥DF于点G,由平移的性质可得AD=CF=2,∠ACB=∠F=30°,再由30°直角三角形的性质即可求得CF的值.【详解】如图,作CG⊥DF于点G,由平移知,AD=CF=2,∠ACB=∠F=30°,∴CG=CF=1,即点C到DF的距离为1.故选A.【点睛】本题考查了平移的性质及30°直角三角形的性质,正确作出辅助线,熟练利用平移的性质及30°直角三角形的性质是解决问题的关键.7、B【解析】

根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【详解】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为,于是得到B3的纵坐标为2…∴B8的纵坐标为2故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.8、D【解析】

把这组数据按从小到大的顺序排列,然后按照中位数的定义求解.【详解】解:这组数据按从小到大的顺序排列为:35,36,38,1,42,42,68,

则中位数为:1.

故选D.【点睛】本题考查了中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.9、B【解析】

首先根据分式有意义的条件知x≠0,然后分x>0和x<0两种情况,根据反比例函数的性质作答.注意本题中函数值y的取值范围.【详解】解:当x>0时,函数y=即y=,其图象在第一象限;当x<0时,函数y=即y=-,其图象在第二象限.

故选B.【点睛】反比例函数的性质:反比例函数y=的图象是双曲线.当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.10、D【解析】分析:由图知:在行驶的过程中,有一段时间小王到家的距离都不变,且最后回到了家,可根据这两个特点来判断符合题意的选项.

详解:由图知:在前往新华书店的过程中,有一段时间小王到家的距离都不变,故可排除B和C,由最后回到了家可排除A,所以只有选项D符合题意;

故选D.

点睛:本题主要考查函数的图象的知识点,重在考查了函数图象的读图能力.能够根据函数的图象准确的把握住关键信息是解答此题的关键.二、填空题(每小题3分,共24分)11、1.【解析】

先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案为:1.【点睛】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.12、【解析】

根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.【详解】解:由题意得,△A2B2C2的边长为△A3B3C3的边长为△A4B4C4的边长为…,∴△AnBnCn的边长为故答案为:【点睛】本题考查了三角形中位线定理,三角形的中位线平行于第三边并且等于第三边的一半,根据规律求出第n个等边三角形的边长是解题的关键.13、1【解析】

从一组数据中找出出现次数最多的数就是众数,发现1出现次数最多,因此1是众数.【详解】解:出现次数最多的是1,因此众数是1,故答案为:1.【点睛】本题考查了众数的意义,从一组数据中找到出现次数最多的数就是众数.14、4【解析】

因为在平行四边形ABCD中,AQ∥BP,只要再证明AQ=BP即可,即点P所走的路程等于Q点在边AD上未走的路程.【详解】由已知可得:BP=2t,DQ=t,∴AQ=12−t.∵四边形ABPQ为平行四边形,∴12−t=2t,∴t=4,∴t=4秒时,四边形ABPQ为平行四边形.【点睛】本题考查了平行四边形的性质,解题的关键是找到等量关系AQ=BP.15、1【解析】

将a+b、ab的值代入计算可得.【详解】解:当a+b=4,ab=2时,===1,故答案为:1.【点睛】本题主要考查分式的加减法,解题的关键是掌握整体代入思想的运用及分式加减运算法则、完全平方公式.16、(1)②;(2)2【解析】

根据分式的混合运算法则进行计算即可.【详解】(1)②,应该是.(2)解:原式=.当时,【点睛】此题考查分式的混合运算,解题关键在于掌握运算法则.17、2.5小时【解析】

平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【详解】解:由题意,可得这10名学生周末利用网络进行学均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(小时).故答案为2.518、−1≤b≤1【解析】

由AB,AD的长度可得出点A,C的坐标,分别求出直线经过点A,C时b的值,结合图象即可得出结论.【详解】解:∵AB=1,AD=1,∴点A的坐标为(−1,0),点C的坐标为(1,1).当直线y=−x+b过点A时,0=1+b,解得:b=−1;当直线y=−x+b过点C时,1=−1+b,解得:b=1.∴当直线y=−x+b与矩形ABCD的边有公共点时,实数b的取值范围是:−1≤b≤1.故答案为:−1≤b≤1.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用极限值法求出直线经过点A,C时b的值是解题的关键.三、解答题(共66分)19、(1)见解析;(2)y与x的函数解析式为y=12-4x(0≤x<【解析】

(1)证明△BAM≌△CBF,根据全等三角形的性质证明;(2)作EH⊥CD于H,根据全等三角形的性质求出FH,再根据梯形的面积公式计算即可.【详解】(1)证明:∵GE⊥AM,∴∠BAM+∠ABG=90°,又∠CBF+∠ABG=90°,在△BAM和△CBF中,∠BAM=∠CBF,AB=BC,∠ABM=∠BCF,∴△BAM≌△CBF(ASA),∴BM=CF;(2)解:作EH⊥CD于H,由(1)得:△BAM≌△HEF,∴HF=BM=2,∴DF=4-2-x=2-x,∴y=1答:y与x的函数解析式为y=12-4x(0≤x<故答案为:(1)见解析;(2)y与x的函数解析式为y=12-4x(0≤x<【点睛】本题考查了全等三角形的判定与性质、正方形的性质.20、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.【解析】【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【详解】(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.21、(1)△PAB;△PAD;△PBC;△PDC,180°;(2)成立,证明见解析;(3)或.【解析】

(1)根据题意推导即可得出结论.(2)求证PE⊥PB,PE=PB,由AC为对角线以及已知条件可先证明△PDC≌△PBC,得PD=PB,PB=PE,PE=PD.由△PDC≌△PBC可得出∠PDC=∠PBC,最后得出∠EPD=∠FCE=90°,即PE⊥PB.(3)分两种情况讨论当点P在线段AC的反向延长线上时,当点P在线段AC的延长线上时.【详解】(1)由正方形的性质,图1中有三对全等的三角形,即△ABC≌△ADC,△PAB≌△PAD,和△PBC≌△PDC,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD=90°,故在四边形PECD中,只需证∠PDC+∠PEC=180°即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.(2)(1)中的结论成立.①∵四边形ABCD是正方形,AC为对角线,∴CD=CB,∠ACD=∠ACB,又∵PC=PC,∴△PDC≌△PBC.∴PD=PB.∵PB=PE,∴PE=PD.②由①得△PDC≌△PBC.∴∠PDC=∠PBC.又∵PE=PB,∴∠PBE=∠PEB.∴∠PDC=∠PEB如图,记DC与PE的交点为F,则∠PFD=∠CFE.∴∠EPD=∠FCE=90°.∴PE⊥PB.(3)如图,当点P在线段AC上时,过点P作PH⊥BC,垂足为H.设PB=x,则,∴,解得,当点P在线段AC的反向延长线上时,同理可得;当点P在线段AC的延长线上时,△PBE是等边三角形不成立.综上,x=或.【点睛】此题考查正方形的性质,全等三角形判定与性质,解题关键在于证明全等三角形得出结论进行推导.22、1);(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.【解析】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x的取值范围,再根据y随着x的增大而增大,得出x的值.试题解析:(1)因为购买大型客车x辆,所以购买中型客车辆..(2)依题意得<x.解得x>1.∵,y随着x的增大而增大,x为整数,∴当x=11时,购车费用最省,为22×11+800="1"042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1042万元.考点:一次函数的应用23、(1)自变量是时间;(2)大约在3时水位最深,最深是8米;(3)在0到3时和9到12时,水位是随着时间推移不断上涨的.【解析】

(1)根据函数图象,可以直接写出自变量;

(2)根据函数图象中的数据可以得到大约在什么时间水位最深,最深是多少;

(3)根据函数图象,可以写出大约在什么时间段水位是随着时间推移不断上涨的.【详解】(1)由图象可得,在这一问题中,自变量是时间;(2)大约在3时水位最深,最深是8米;(3)由图象可得,在0到3时和9到12时,水位是随着时间推移不断上涨的.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)DF=BE;(2)EB=FD,证明见解析;(3)DF=BE【解析】

(1)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF(2)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF(3)根据题意可得AB=AF,AD=AE,∠FAB=∠EAD,即可得∠FAD=∠EAB,则可证△AFD≌△AEB,可得BE=DF.【详解】解:(1)∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△BAF和△AED是等边三角形∴AF=AB,AD=AE,∠FAB=∠EAD=60°∴AE=AD=AF=AB,∠FAD=∠EAB∴△ABE≌△ADF∴DF=BE故答案为DF=BE(2)EB=FD理由如下:∵△BAF和△AED是等边三角形∴AF=AB,AD=AE,∠FAB=∠EAD=60°∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论