版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,作BF⊥AM于点F,连接BE.若AF=1,四边形ABED的面积为6,则BF的长为()A.2 B.3 C. D.2.若在实数范围内有意义,则的取值范围是()A. B. C. D.且3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.504.菱形的对角线长分别是,则这个菱形的面积是()A. B. C. D.5.人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程(
)A.100(1+x)=196 B.100(1+2x)=196C.100(1+x2)=196 D.100(1+x)2=1966.如图,在平行四边形ABCD中,用直尺和圆规作的∠BAD平分线交BC于点E,若AE=8,AB=5,则BF的长为()A.4 B.5 C.6 D.87.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤48.若关于x的分式方程有增根,则k的值是()A. B. C.2 D.19.已知a>b,c≠0,则下列关系一定成立的是().A.ac>bc B. C.c-a>c-b D.c+a>c+b10.如图,在菱形ABCD中,DE⊥AB,=,BE=2,则tan∠DBE的值()A. B.2 C. D.11.下列式子中y是x的正比例函数的是()A.y=3x-5 B.y= C.y= D.y=212.矩形是轴对称图形,对称轴可以是()A. B. C. D.二、填空题(每题4分,共24分)13.已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.14.如图,如果甲图中的阴影面积为S1,乙图中的阴影面积为S2,那么=________.(用含a、b的代数式表示)15.将一次函数的图象向上平移个单位得到图象的函数关系式为________________.16.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是,则飞机着陆后滑行的最长时间为秒.17.方程x2=x的解是_____.18.不等式组的解集是x>4,那么m的取值范围是_____.三、解答题(共78分)19.(8分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.20.(8分)如图,是的中线,是线段上一点(不与点重合).交于点,,连接.(1)如图1,当点与重合时,求证:四边形是平行四边形;(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长交于点,若,且,求的度数.21.(8分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?22.(10分)如图,已知□ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC.(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.23.(10分)如图,在直角坐标系中,已知点O,A的坐标分别为(0,0),(﹣3,﹣2).(1)点B的坐标是,点B与点A的位置关系是.现将点B,点A都向右平移5个单位长度分别得到对应点C和D,顺次连接点A,B,C,D,画出四边形ABCD;(2)横、纵坐标都是整数的点成为整数点,在四边形ABCD内部(不包括边界)的整数点M使S△ABM=8,请直接写出所有点M的可能坐标;(3)若一条经过点(0,﹣4)的直线把四边形ABCD的面积等分,则这条直线的表达式是,并在图中画出这条直线.24.(10分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.(1)求,两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.25.(12分)先化简,再求值:,其中m=-3,n=-1.26.我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?
参考答案一、选择题(每题4分,共48分)1、B【解析】
先证明ΔABF≌ΔDAE得到BF=AE,设BF=x,则AE=x,DE=AF=1,利用四边形ABED的面积=得,解之即可求得BF的长.【详解】∵四边形ABCD是正方形,∴BA=AD,∠BAD=90º,∴∠DAE+∠BAF=90º,∵BF⊥AM,DE⊥AM,∴∠AFB=∠DEA=90º,∴∠ABF+∠BAF=90º,∴∠ABF=∠DAE,在ΔABF和ΔDAE中∴ΔABF≌ΔDAE(AAS),∴BF=AE,DE=AF=1设BF=x,则AF=x,由四边形ABED的面积为6得:,即,解得:(舍去),∴BF=3,故选:B.【点睛】本题主要考查正方形的性质、三角形面积公式以及全等三角形的判定,熟练运用全等三角形的知识是解答的关键.2、D【解析】
根据二次根式的性质和分式的意义,被开方数大于等于1,分母不等于1,就可以求解.【详解】根据二次根式有意义,分式有意义得:x+1≥1且x≠1,解得:x≥-1且x≠1.故选D.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.3、D【解析】试题分析:根据题意可知AB为斜边,因此可根据勾股定理可知AB2=A故选D.点睛:此题主要考查了勾股定理的应用,解题关键是根据勾股定理列出直角三角形三边关系的式子,然后化简代换即可.4、B【解析】
根据菱形的面积公式:菱形面积=ab(a、b是两条对角线的长度)可得到答案.【详解】菱形的面积:故选:B.【点睛】此题主要考查了菱形的面积公式,关键是熟练掌握面积公式.5、D【解析】
设月平均增长率为x,分别表示出四、五月份的销售量,根据五月份的销售量列式即可.【详解】解:设月平均增长率为x,则四月份销售量为100(1+x),五月份的销售量为:100(1+x)2=196.故答案为:D【点睛】本题考查了列一元二次方程,理清题中等量关系是列方程的关键.6、C【解析】
根据尺规作图可得四边形ABEF为菱形,故可根据勾股定理即可求解.【详解】连接EF,设AE、BF交于O点,∵AE平分∠BAD,∴∠BAE=∠FAE,又AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,故AF=BE,又AF∥BE,∴四边形ABEF是菱形,故AE⊥BF,∵AE=8,AB=5∴BF=2BO=故选C.【点睛】此题主要考查菱形的判定与性质,解题的关键是熟知特殊平行四边形的判定与性质及勾股定理的应用.7、B【解析】
解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时,自变量的取值范围.【详解】不等式ax+b≥0的解集为x≤1.
故选B.【点睛】本题考查的知识点是利用图象求解各问题,解题关键是先画函数图象,根据图象观察,得出结论.8、D【解析】
方程两边同乘以x-5可化为x-6+(x-5)=-k,由关于x的分式方程有增根可得x=5,把x=5代入x-6+(x-5)=-k即可求得k值.【详解】方程两边同乘以x-5得,x-6+(x-5)=-k,∵关于x的分式方程有增根,∴x=5,把x=5代入x-6+(x-5)=-k得,5-6=-kk=1.故选D.【点睛】本题考查了分式方程的增根,熟知使分式方程最简公分母等于0的未知数的值是分式方程的增根是解决问题的关键.9、D【解析】
根据不等式的基本性质一一判断可得答案.【详解】解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即.故本选项错误;C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.故选D.【点睛】本题主要考查的是不等式的基本性质.不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.即如果a>b,那么ac>bc;不等式的性质2:不等式两边乘(或除)以同一个正数,不等号的方向不变.即如果a>b,c>0,那么ac>bc或(>);不等式的性质3:不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc或(<).10、B【解析】
试题解析:设AE=3x,∵∴BE=5x−3x=2x=2,∴x=1,∴AD=5,AE=3,故选B.11、C【解析】
根据正比例函数的定义:形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数进行分析即可.【详解】解:A、y=3x-5,是一次函数,不是正比例函数,故此选项错误;B、y=,是反比例函数,不是正比例函数,故此选项错误;C、y=x是正比例函数,故此选项正确;D、y=2不是正比例函数,故此选项错误;故选:C.【点睛】此题主要考查了正比例函数定义,关键是掌握正比例函数的一般形式.12、D【解析】
根据轴对称图形的概念求解.矩形是轴对称图形,可以左右重合和上下重合.【详解】解:矩形是轴对称图形,可以左右重合和上下重合,故可以是矩形的对称轴,故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.二、填空题(每题4分,共24分)13、【解析】
根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【详解】解:∵正方形的对角线长为2,设正方形的边长为x,∴2x²=(2)²解得:x=2∴正方形的边长为:2故答案为2.【点睛】本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.14、【解析】
左边阴影部分用大正方形面积减小正方形的面积,右边阴影部分的面积等于长乘以宽,据此列出式子,再因式分解、约分可得【详解】解:,故答案为:.【点睛】本题主要考查因式分解的应用及分式的化简,根据图示列出面积比的算式是解题的关键.15、.【解析】
根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.【详解】解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.故答案为:.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.16、1.【解析】
把解析式化为顶点式,再根据二次函数的性质得出答案即可。【详解】解:,∴当t=1时,s取得最大值,此时s=2.故答案为1.考点:二次函数的应用;最值问题;二次函数的最值.17、x1=0,x2=1【解析】
利用因式分解法解该一元二次方程即可.【详解】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题的关键.18、m≤1【解析】
根据不等式组解集的求法解答.求不等式组的解集.【详解】不等式组的解集是x>1,得:m≤1.故答案为m≤1.【点睛】本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题(共78分)19、45【解析】设乙每分钟打字x个,甲每分钟打个,根据题意可得:,去分母可得:,解得,经检验可得:,故答案为:45.20、(1)见解析;(2)成立,见解析;(3).【解析】
(1)先判断出∠ECD=∠ADB,进而判断出△ABD≌△EDC,即可得出结论;(2)先判断出四边形DMGE是平行四边形,借助(1)的结论即可得出结论;(3)先判断出MI∥BH,MI=BH,进而利用直角三角形的性质即可得出结论.【详解】解:(1)∵,∴,∵,∴,∵是的中线,且与重合,∴,∴,∴,∵,∴四边形是平行四边形;(2)结论成立,理由如下:如图2,过点作交于,∵,∴四边形是平行四边形,∴,且,由(1)知,,,∴,,∴四边形是平行四边形;(3)如图3取线段的中点,连接,∵,∴是的中位线,∴,,∵,且,∴,,∴.【点睛】此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解绑的关键.21、(1)1.5小时;(2)40.8;(3)48千米/小时.【解析】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).【点评】本题考查的是一次函数在实际生活中的运用,解答此类问题时要利用数形结合的方法解答.22、(1)作图解析;(2)证明见解析.【解析】
(1)根据题目要求画出图形即可.(2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.【详解】(1)如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC∵BC=CE,∴AD=CE∵AD∥BC,∴∠DAF=∠CEF在△ADF和△ECF中,∵,∴△ADF≌△ECF(AAS)【点睛】本题主要考查尺规作图以及全等三角形的证明、平行四边形的性质,熟练掌握全等三角形证明方法是解题关键.23、(1)(﹣3,2),关于x轴对称;(2)点M(1,1),(1,0),(1,﹣1);(3)y=﹣8x﹣1【解析】
(1)根据直角坐标系的特点即可求解,根据题意平移
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海事处廉政教育月党课
- 七年级信息技术教案
- 七年级美术的说课稿10篇
- 浙江省绍兴市职业教育中心2024-2025学年高一上学期期中考试中国特色社会主义试题
- 借款协议书(2篇)
- 统编版语文七年级上册第10课《往事依依》练习题(含答案)
- 江苏盐城七校2024至2025学年高二上学期10月联考化学试卷试题及答案解析
- 行政年度工作参考计划范文
- 2025年汽油发电机组项目发展计划
- 学校车辆租赁合同书范本
- 消化道出血护理新进展
- MOOC 心理健康与创新能力-电子科技大学 中国大学慕课答案
- 黄蒿界矿井及选煤厂建设项目环境影响报告书
- MOOC 数字电路分析与设计-浙江大学 中国大学慕课答案
- 感动中国人物张桂梅心得体会(30篇)
- 2024年云南昆明市公安局文职辅警招聘笔试参考题库附带答案详解
- 采购计划员年终工作总结
- 技术总监年度述职报告
- 第十四章出口管制课件
- 常用井下工具原理与用途课件
- 广东省东莞市2023-2024学年高一上学期期末生物试题
评论
0/150
提交评论