版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.要使式子3-x有意义,则x的取值范围是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤32.以下说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有三个内角相等的四边形是矩形D.对角线垂直且相等的四边形是正方形3.六边形的内角和是()A.540°B.720°C.900°D.360°4.下列从左到右的变形,是因式分解的是A. B.C. D.5.下表记录了四名运动员参加男子跳高选拔赛成绩的平均数与方差:甲乙丙丁平均数173175175174方差3.53.512.515如果选一名运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁6.一个多边形的每个内角均为108°,则这个多边形是()边形.A.4 B.5 C.6 D.77.直线的截距是()A.—3 B.—2 C.2 D.38.函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.9.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(
)A.﹣1 B.0 C.1 D.310.下列各曲线中,表示是的函数是()A. B. C. D.11.“厉害了,华为!”2019年1月7日,华为宣布推出业界最高性能ABM-based处理器—鲲鹏920.据了解,该处理器采用7纳米制造工艺,已知1纳米=0.000000001米,则7纳米用科学记数法表示为()A.7×10-9米 B.7×10-8米 C.7×108米 D.0.7×10-8米12.如果,那么yx的算术平方根是()A.2 B.1 C.-1 D.±1二、填空题(每题4分,共24分)13.如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.14.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为_____.15.菱形ABCD中,∠B=60°,AB=4,点E在BC上,CE=2,若点P是菱形上异于点E的另一点,CE=CP,则EP的长为_____.16.数据3,7,6,,1的方差是__________.17.有一组勾股数,其中的两个分别是8和17,则第三个数是________18.因式分解:m2n+2mn2+n3=_____.三、解答题(共78分)19.(8分)先化简,再求值,其中a=-220.(8分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.22.(10分)如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为,EG与CG的位置关系为,请证明你的结论.(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.(3)在图2中,若BC=4,BF=3,连接EC,求的面积.23.(10分)已知一次函数的图象过点和,求这个一次函数的解析式.24.(10分)如图,中,、两点在对角线上,且.求证:.25.(12分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立。(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)26.如图,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动.(1)如果点,分别从点,同时出发,那么几秒后,的面积等于6?(2)如果点,分别从点,同时出发,那么几秒后,的长度等于7?
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据被开方数是非负数,可得答案.【详解】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2、B【解析】
根据平行四边形与特殊平行四边形的判定定理判断即可.【详解】A.一组对边平行且相等的四边形是平行四边形,一组对边平行,另一组对边相等的四边形是可能是等腰梯形,故A错误;B.对角线互相垂直平分的四边形是菱形,正确;C.有三个内角都是直角的四边形是矩形,三个相等的内角不是直角,那么也不能判定为矩形,故C错误;D.对角线垂直平分且相等的四边形是正方形,故D错误.故选B.【点睛】本题考查平行四边形与特殊平行四边形的判定定理,熟练掌握判定定理是解题的关键.3、B【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.4、D【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.5、B【解析】【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【详解】∵=3.5,=3.5,=12.5,=15,∴=<<,∵=173,=175,=175,=174,∴=>>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择乙,故选B.【点睛】本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6、B【解析】
首先求得外角的度数,然后利用360除以外角的度数即可求解.【详解】外角的度数是:180-108=72°,
则这个多边形的边数是:360÷72=1.故选B.7、A【解析】
由一次函数y=kx+b在y轴上的截距是b,可求解.【详解】∵在一次函数y=2x−1中,b=−1,∴一次函数y=2x−1的截距b=−1.故选:A.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.8、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.9、D【解析】分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆=b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.10、B【解析】
对于x的每一个值,y都有唯一的值与它对应,则称y是x的函数,据此观察图象可得.【详解】解:A,C,D曲线,对于每一个x值,都有2个y值与它对应,因此不符合函数的定义,B中一个x对应一个y值,故B曲线表示y是x的函数.故答案为:B【点睛】本题考查了函数的定义,准确把握定义是解题的关键.11、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】7纳米=0.000000007米=7×10﹣9米.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、B【解析】
根据二次根式的性质,先求出x和y的值,然后代入计算即可.【详解】解:∵,∴,,∴且,∴,∴,∴,∵,∴的算术平方根为1;故选:B.【点睛】本题考查了二次根式的性质,二次根式的化简,以及算术平方根的定义,解题的关键是熟练掌握二次根式的性质,正确求出x、y的值.二、填空题(每题4分,共24分)13、30°【解析】
根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE=∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【详解】∵四边形ABCD是菱形,
∴O为BD中点,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°【点睛】考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.14、1【解析】
由方程有实数根,可得出b1﹣4ac≥0,代入数据即可得出关于m的一元一次不等式,解不等式即可得m的取值范围,再找出其内的最大偶数即可.【详解】解:当m﹣1=0时,原方程为1x+1=0,解得:x=﹣,∴m=1符合题意;当m﹣1≠0时,△=b1﹣4ac=11﹣4(m﹣1)≥0,即11﹣4m≥0,解得:m≤3且m≠1.综上所述:m≤3,∴偶数m的最大值为1.故答案为:1.【点睛】本题考查了根的判别式以及解一元一次方程,分方程为一元一次或一元二次方程两种情况找出m的取值范围是解题的关键.15、1或2或3﹣.【解析】
连接EP交AC于点H,依据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据PE=EH求解即可.【详解】解:如图所示:连接EP交AC于点H.∵菱形ABCD中,∠B=10°,∴∠BCD=120°,∠ECH=∠PCH=10°.在△ECH和△PCH中,∴△ECH≌△PCH.∴∠EHC=∠PHC=90°,EH=PH.∴OC=EC=.∴EH=3,∴EP=2EH=1.如图2所示:当P在AD边上时,△ECP为等腰直角三角形,则.当P′在AB边上时,过点P′作P′F⊥BC.∵P′C=2,BC=4,∠B=10°,∴P′C⊥AB.∴∠BCP′=30°.∴.∴.故答案为1或2或3﹣.【点睛】本题主要考查的是菱形的性质,熟练掌握菱形的性质是解题的关键.16、10.8【解析】
根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(3+7+6-2+1)÷5=3,
则这组数据的方差是:[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.8故答案为:10.8【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、1【解析】设第三个数是,①若为最长边,则,不是整数,不符合题意;②若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为1.18、n(m+n)1【解析】
先提公因式n,再利用完全平方公式分解因式即可.【详解】解:m1n+1mn1+n3=n(m1+1mn+n1)=n(m+n)1.故答案为:n(m+n)1【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.三、解答题(共78分)19、,原式=-5;【解析】
先把除法运算转化为乘法运算,再把分子分母运用完全平方公式和平方差公式因式分解,约去公因式,化成最简形式,再把的值代入求值.【详解】原式,当时,原式.【点睛】这道求代数式值的题目,不应考虑把的值直接代入,通常做法是先把代数式化简,把除法转换为乘法,约去分子分母中的公因式,然后再代入求值.20、(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【解析】
(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;
②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;
(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°-∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【详解】(1)①证明:如图1,∵AF=CF,∴∠1=∠2,∵∠1+∠ADC=90°,∠2+∠3=90°,∴∠3=∠ADC,∴FD=FC,∴AF=FD,即点F是AD的中点;②BE=2CF,BE⊥CF.理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠2,∴BE=2CF,而∠2+∠3=90°,∴∠CBE+∠3=90°,∴CF⊥BE;(2)仍然有BE=2CF,BE⊥CF.理由如下:延长CF到G使FG=CF,连结AG、DG,如图2,∵AF=DF,FG=FC,∴四边形ACDG为平行四边形,∴AG=CD,AG∥CD,∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,∴CD=CE=AG,∵△DEC绕点C顺时针旋转α角(0<α<90°),∴∠BCD=α,∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,∴∠GAC=∠ECB,在△AGC和△CEB中,∴△AGC≌△CEB,∴CG=BE,∠2=∠1,∴BE=2CF,而∠2+∠BCF=90°,∴∠BCF+∠1=90°,∴CF⊥BE.故答案为(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【点睛】本题考查旋转的性质,全等三角形的判定与性质,等腰直角三角形和平行四边形的性质.21、(1)详见解析;(2)1【解析】
(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【详解】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【点睛】本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.22、(1)EG=CG,EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中结论仍然成立,理由见解析,点F在AB的左侧时,(1)中的结论仍然成立;(3)S△CEG=.【解析】
(1)过E作EM⊥AD交AD的延长线于M,证明△AME是等腰直角三角形,得出AM=EM=AE=AB,证出DG=AG=AD=AM=EM,得出GM=CD,证明△GEM≌△CGD(SAS),得出EG=CG,∠EGM=∠GCD,证出∠CGE=180°-90°=90°,即可得出EG⊥CG;(2)延长EG至H,使HG=EG,连接DH、CH、CE,证明△EFG≌△HDG(SAS),得出EF=HD,∠EFG=∠HDG,证明△CBE≌△CDH(SAS),得出CE=CH,∠BCE=∠DCH,得出∠ECH=∠BCD=90°,证明△ECH是等腰直角三角形,得出CG=EH=EG,EG⊥CG;延长EG至H,使HG=EG,连接DH、CH、CE,同理可证CG=EH=EG,EG⊥CG;(3)作EM垂直于CB的延长线与M,先求出BM,EM的值,即可根据勾股定理求出CE的长度,从而求出CG的长,即可求出面积.【详解】解:(1)EG=CG,EG⊥CG;理由如下:过E作EM⊥AD交AD的延长线于M,如图1所示:则∠M=90°,∵四边形ABCD是正方形,∴AB=AD=CD,∠BAD=∠D=90°,∴∠BAM=90°,∵△BEF是等腰直角三角形,∴∠BAE=45°,AE=AB,∴∠MAE=45°,∴△AME是等腰直角三角形,∴AM=EM=AE=AB,∵G是DF的中点,∴DG=AG=AD=AM=EM,∴GM=CD,在△GEM和△CGD中,,∴△GEM≌△CGD(SAS),∴EG=CG,∠EGM=∠GCD,∵∠GCD+∠DGC=90°,∴∠EGM+∠DGC=90°,∴∠CGE=180°-90°=90°,∴EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中的结论仍然成立,理由如下:延长EG至H,使HG=EG,连接DH、CH、CE,如图2所示:∵G是DF的中点,∴FG=DG,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴EF=HD,∠EFG=∠HDG,∵△BEF是等腰直角三角形,∴EF=BE,∠BFE=∠FBE=45°,∴BE=DH,∵四边形ABCD是正方形,∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,∴∠AFD=∠CDG,∴∠AFE=∠CDH=135°,∵∠CBE=90°+45°=135°,∴∠CBE=∠CDH,在△CBE和△CDH中,,∴△CBE≌△CDH(SAS),∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠BCD=90°,∴△ECH是等腰直角三角形,∵EG=HG,∴CG=EH=EG,EG⊥CG;点F在AB的左侧时,(1)中的结论仍然成立,理由如下:延长EG至H,使HG=EG,连接DH、CH、CE,如图3所示:∵G是DF的中点,∴FG=DG,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴EF=HD,∠EFG=∠HDG,∵△BEF是等腰直角三角形,∴EF=BE,∠BEF=90°,∴BE=DH,∵四边形ABCD是正方形,∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,∴∠BNF=∠CDG,∵∠EFG+∠BNF+∠BEF+∠ABE=∠HDG+∠CDG+∠CDH=360°,∴∠BEF+∠ABE=∠CDH,∴∠ABC+∠ABE=∠CDH,即∠CBE=∠CDH,在△CBE和△CDH中,,∴△CBE≌△CDH(SAS),∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠BCD=90°,∴△ECH是等腰直角三角形,∵EG=HG,∴CG=EH=EG,EG⊥CG;(3)如下图所示:作EM垂直于CB的延长线与M,∵△BEF为等腰直角三角形,BF=3,∴BE=,∠ABE=45°,∵EM⊥BM,AB⊥CM,∴∠EBM=45°,∴△EMB为等腰直角三角形,∴EM=BM=,∵BC=4,∴CM=,∴CE=,由(2)知,△GEC为等腰直角三角形,∴CG=EG=,∴S△CEG=.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于压轴题型.23、.【解析】
设一次函数解析式为y=kx+b,把两个已知点的坐标代入得到b、k的方程组,然后解方程组即可.【详解】解:设这个一次函数的解析式为,把,代入中,得,解得,所以一次函数的解析式为.【点睛】考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.24、见解析【解析】
证明△ADF≌△CBE,根据全等三角形的对应角相等即可证得∠AFD=∠CEB,进而得出∠AFE=∠CEF,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥CB,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 声光电活动策划执行合同
- 国际品牌美发师合作合同
- 政府活动汽车租赁场地租赁合同
- 模箱购销合同范例
- 打包机采购合同模板
- 投诉驾校教练合同模板
- 辐射防护区域划分指南
- 技术员工招聘合同模板
- 剧本杀中心文明使者管理办法
- 电梯维保招投标文书音乐厅
- 历史人教部编版七年级(上册)3.10秦末农民大起义2024版新教材
- 《寂静的春天》参考课件8
- Unit 2 Section B (1a-1d)教学设计 2023-2024学年人教版英语七年级上册
- 2024年新冀教版一年级上册数学课件 我上学了 2分享幼儿园生活
- 强度计算.结构分析:屈曲分析的有限元方法
- 事业单位考试题库:公文写作能力测试试题及答案
- WAT电性参数介绍-2022年学习资料
- 老年心房颤动诊治中国专家共识(2024)解读
- 纪念白求恩课文课件省公开课一等奖新名师比赛一等奖课件
- 医疗器械技术方案(2篇)
- IATF16949-2016质量管理体系程序文件全套
评论
0/150
提交评论