九年级数学复习题_第1页
九年级数学复习题_第2页
九年级数学复习题_第3页
九年级数学复习题_第4页
九年级数学复习题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

WORD(可编辑版本)———九年级数学复习题各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些九年级数学复习的学习资料,希望对大家有所援助。

初三数学知识点分类复习题

【实弹射击】

1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.

(1)填空:如图a,AC=,BD=;四边形ABCD是梯形.

(2)请写出图a中所有的相似三角形(不含全等三角形).

图10

(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

图a

2、(09广东省)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,

(1)证明:Rt△ABM∽Rt△MCN;

(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;

(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,

求此时x的值.

3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:

(1)说明△FMN∽△QWP;

(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?当x在何范围时,△PQW不为直角三角形?

第3题图(2)

(3)问当x为何值时,线段MN最短?求此时MN的值。

第3题图(1)

4、(08茂名市)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.

(1)求证:∠ADB=∠E;(3分)

(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3分)

(3)当AB=5,BC=6时,求⊙O的半径.(4分)

相关链接:

若是一元二次方程的两根,则

5、(08茂名市)如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、C(,0)三点,且-=5.

3、求、的值;

4、(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;

(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.

6、(08梅州市)如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.

(1)求证:ADE∽BEF;

(2)设正方形的边长为4,AE=,BF=.当取什么值时,有值?并求出这个值.

初三数学总复习测试

一、选择题(每小题3分,共30分)

1.在平面直角坐标系中,点P(3,-x2-1)所在的象限是()

A.第一象限B.第二象限C.第三象限D.第四象限

2.若反比例函数y=kx的图象经过点(-1,2),则这个函数的图象一定经过点()

A.(2,-1)B.-12,2C.(-2,-1)D.12,2

3.如果一次函数y=kx+b的图象经过第一象限,且与y轴负半轴相交,那么()

A.k0,b0B.k0,b0C.k0,b0D.k0,b0

4.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是()

A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大

C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面

5.把抛物线y=-x2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为()

A.y=-(x-1)2-3B.y=-(x+1)2-3C.y=-(x-1)2+3D.y=-(x+1)2+3

6.矩形面积为4,长为y,宽为x,y是x的函数,其函数图象大致是()

7.如图,A是反比例函数y=kx图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()

A.1B.2C.3D.4

8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的点)离水面2m,水面宽为4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()

A.y=-2x2B.y=2x2C.y=-12x2D.y=12x2

9.函数y=x+m与y=mx(m≠0)在同一坐标系内的图象如图,可以是()

10.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-3=0的根的状况是()

A.有两个不相等的实数根B.有两个异号的实数根

C.有两个相等的实数根D.没有实数根

二、填空题(每小题3分,共24分)

11.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B(a,2),则a=__________.

12.函数y=-x-x-1中自变量x的取值范围是__________.

13.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量务必__________.

14.已知关于x的一次函数y=mx+n的图象如图所示,则|n-m|-m2可化简为__________.

15.函数y1=x(x≥0),y2=4x(x0)的图象如图所示,则结论:

①两函数图象的交点A的坐标为(2,2);

②当x2时,y2y1;

③当x=1时,BC=3;

④当x渐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.

其中正确结论的序号是__________.

16.抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论:__________,__________.(对称轴方程,图象与x轴正半轴、y轴交点坐标例外)

17.在直线y=-x-1上且位于x轴下方的所有点,它们的横坐标的取值范围是______.

18.对于每个非零自然数n,抛物线y=x2-2n+1n(n+1)x+1n(n+1)与x轴交于An,Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2011B2011的值是__________.

三、解答题(共66分)

19.(6分)在平面直角坐标系xOy中,反比例函数y=kx的图象与y=3x的图象关于x轴对称,又与直线y=ax+2交于点A(m,3),试确定a的值.

20.(6分)A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C,D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C,D两县农用车的费用分别为每辆300元和150元,从B市运往C,D两县农用车的费用分别为每辆200元和250元.

(1)设从A市运往C县的农用车为x辆,此次调运总费用为y元,求y与x的函数关系式,并写出自变量x的取值范围;

(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用.

21.(8分)如图,一次函数y=ax+b的图象与反比例函数y=kx的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(-2,0),点A的横坐标是2,tan∠CDO=12.

(1)求点A的坐标;

(2)求一次函数和反比例函数的解析式;

(3)求△AOB的面积.

22.(8分)某单位准备印制一批证书.现有两个印刷厂可供选择.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.

(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.

(2)当印制证书8千个时,应选择哪个印刷厂节省费用?节省费用多少元?

(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?

23.(9分)探究在图1中,已知线段AB,CD,其中点分别为E,F.

(1)若A(-1,0),B(3,0),则E点坐标为__________;

(2)若C(-2,2),D(-2,-1),则F点坐标为__________.

归纳在图2中,无论线段AB处于坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,则D点坐标为________.(用含a,b,c,d的代数式表示)

运用在图3中,一次函数y=x-2与反比例函数y=3x的图象交点为A,B.

(1)求出交点A,B的坐标;

(2)若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.

24.(9分)阅读下列材料:

题目:已知实数a,x满足a2且x2,试判断ax与a+x的大小关系,并加以说明.

思路:可用“求差法”比较两个数的大小,先列出ax与a+x的差y=ax-(a+x),再

说明y的符号即可.

现给出如下利用函数解决问题的方法:

简解:可将y的代数式整理成y=(a-1)x-a,要判断y的符号可借助函数y=(a-1)x-a的图象和性质解决.

参考以上解题思路解决以下问题:

已知a,b,c都是非负数,a5,且a2-a-2b-2c=0,a+2b-2c+3=0.

(1)分别用含a的代数式表示4b,4c;

(2)说明a,b,c之间的大小关系.

25.(10分)近年来,我国煤矿安全事故频频发生,其中危害的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题.

(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应自变量的取值范围.

(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多快的速度撤离才能在爆炸前逃命?

(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.

初三数学期末考试题

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)

1.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()

A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣2

2.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()

A.1个B.2个C.3个D.4个

3.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c0的解集是()

A.﹣1x

4.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()

A.先向左平移2个单位,再向上平移3个单位

B.先向左平移2个单位,再向下平移3个单位

C.先向右平移2个单位,再向下平移3个单位

D.先向右平移2个单位,再向上平移3个单位

5.为了测量被池塘隔开的A,B两点之间的距离,根据实际状况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()

A.1组B.2组C.3组D.4组

6.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()

A.6B.5C.9D.

7.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则cos∠OBC的值为()

A.B.C.D.

8.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()

A.2B.3C.D.

9.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()

A.100°B.110°C.120°D.130°

10.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A的纵坐标是()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论