版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E、F分别为BC、CD的中点,AP⊥EF分别交BD、EF于O、P两点,M、N分别为BO、DO的中点,连接MP、NF,沿图中实线剪开即可得到一副七巧板.若AB=1,则四边形BMPE的面积是()A. B. C. D.2.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2=C.1+2x= D.1+2x=3.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,64.对于反比例函数,下列说法不正确的是()A.点在它的图像上 B.当时,随的增大而增大C.它的图像在第二、四象限 D.当时,随的增大而减小5.如图,将绕点按逆时针方向旋转得到(点的对应点是点,点的对应点是点),连接,若,则的度数为()A. B. C. D.6.以下图形中,既是中心对称图形,又是轴对称图形的是()A.三角形 B.菱形 C.等腰梯形 D.平行四边形7.数据1,3,5,7,9的方差是().A.2 B.4 C.8 D.168.因式分解x2﹣9y2的正确结果是()A.(x+9y)(x﹣9y)B.(x+3y)(x﹣3y)C.(x﹣3y)2D.(x﹣9y)29.如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为()A.1 B.2 C.3 D.410.不能使四边形ABCD是平行四边形是条件是()A.AB=CD,BC=AD B.AB=CD,C. D.AB=CD,二、填空题(每小题3分,共24分)11.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是____.12.已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是________.13.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.14.对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.15.若直线经过点和点,则的值是_____.16.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.17.如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.18.如图,已知直线y1=﹣x与y2=nx+4n图象交点的横坐标是﹣2,则关于x的不等式nx+4n>﹣x>0解集是_____.三、解答题(共66分)19.(10分)先分解因式,再求值:,其中,.20.(6分)如图,在平面直角坐标系中,直线y=-x+8分别交两轴于点A,B,点C的横坐标为4,点D在线段OA上,且AD=7.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A,C,D,F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,不必说明理由.21.(6分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.22.(8分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.23.(8分)已知关于x的方程(m-1)x-mx+1=0。(1)证明:不论m为何值时,方程总有实数根;(2)若m为整数,当m为何值时,方程有两个不相等的整数根。24.(8分)先化简,再求值:(3x-1﹣x﹣1)÷x-2x2-2x+1,其中25.(10分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.26.(10分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵8元,用300元购买甲种商品的件数恰好与用250元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种商品?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据三角形的中位线的性质得到EF∥BD,EF=BD,推出点P在AC上,得到PE=EF,得到四边形BMPE平行四边形,过M作MF⊥BC于F,根据平行四边形的面积公式即可得到结论.【详解】∵E,F分别为BC,CD的中点,∴EF∥BD,EF=BD,∵四边形ABCD是正方形,且AB=BC=1,∴BD=,∵AP⊥EF,∴AP⊥BD,∴BO=OD,∴点P在AC上,∴PE=EF,∴PE=BM,∴四边形BMPE是平行四边形,∴BO=BD,∵M为BO的中点,∴BM=BD=,∵E为BC的中点,∴BE=BC=,过M作MF⊥BC于F,∴MF=BM=,∴四边形BMPE的面积=BE•MF=,故选B.【点睛】本题考查了七巧板,正方形的性质,平行四边形的判定和性质,三角形的中位线的性质,正确的识别图形是解题的关键.2、B【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【详解】解:假设股票的原价是1,平均增长率为.则90%(1+x)2=1,即(1+x)2=,故选B.【点睛】此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x后是原来价格的(1+x)倍.3、A【解析】试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选A.4、D【解析】
根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.∵=3,∴点(−3,3)在它的图象上,故本选项正确;B.k=−9<0,当x>0时,y随x的增大而增大,故本选项正确;C.k=−9<0,∴它的图象在第二、四象限,故本选项正确;D.k=−9<0,当x<0时,y随x的增大而增大,故本选项错误。故选D.【点睛】此题考查反比例函数的性质,解题关键在于根据反比例函数图象的性质进行分析5、B【解析】
根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【详解】解:如图示,将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,
∴∠BAB′=∠CAC′=120°,AB=AB′,
∴,∵AC′∥BB′,
∴∠C′AB′=∠AB′B=30°,
故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.6、B【解析】
关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.【详解】解:A、三角形既不是中心对称图形,也不是轴对称图形;B、菱形既是中心对称图形,也是轴对称图形;C、等腰梯形是轴对称图形;D、平行四边形是中心对称图形.故选B.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解析】
先计算出平均数,再根据方差公式计算即可.【详解】∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,
∴方差=×[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8;
故选:C.【点睛】考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8、B【解析】
原式利用平方差公式分解即可【详解】解:x2-9y2=(x+3y)(x-3y),
故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.9、B【解析】
根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选B.10、D【解析】
根据平行四边形的判定即可得.【详解】A、,即两组对边分别相等,能使四边形ABCD是平行四边形,此项不符题意B、,即一组对边平行且相等,能使四边形ABCD是平行四边形,此项不符题意C、,即两组对边分别平行,能使四边形ABCD是平行四边形,此项不符题意D、,即一组对边相等,另一组对边平行,这个四边形有可能是等腰梯形,则不能使四边形ABCD是平行四边形,此项符合题意故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题关键.二、填空题(每小题3分,共24分)11、8【解析】
根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数,只要把数x1,x2,x3,x4的和表示出即可.【详解】解:x1,x2,x3,x4的平均数为5x1+x2+x3+x4=45=20,x1+3,x2+3,x3+3,x4+3的平均数为:=(x1+3+x2+3+x3+3+x3+3)4=(20+12)4=8,故答案为:8.【点睛】本题主要考查算术平均数的计算.12、3【解析】
根据求平均数的方法先求出a,再把这组数从小到大排列,3处于中间位置,则中位数为3.【详解】a=3×5-(1+4+3+5)=2,把这组数从小到大排列:1,2,3,4,5,
3处于中间位置,则中位数为3.故答案为:3.【点睛】本题考查中位数与平均数,解题关键在于求出a.13、36°【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.14、﹣9≤x<﹣1【解析】
根据题意可以列出相应的不等式,解不等式求出x的取值范围即可得答案.【详解】∵[x]表示不大于x的最大整数,[]=﹣2,∴﹣2≤<﹣1,解得:﹣9≤x<﹣1.故答案为:﹣9≤x<﹣1.【点睛】本题考查了一元一次不等式组和一元一次不等式组的整数解的应用,能根据题意得出关于x的不等式组是解题关键.15、4【解析】
分别把和代入中即可求出k和b的值,从而可以得出k-b的值.【详解】解:∵直线经过点和点,∴将代入中得-2=k-3,解得k=1,将代入中得b=-3,∴k-b=1-(-3)=4,故答案为4.【点睛】本题考查一次函数的应用,解题的关键是能根据函数图象上的点与函数的解析式的关系列出关于k和b的一元一次方程,并分别求出k和b的值.16、1.【解析】
作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.【详解】作PH⊥AB于H,∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,∴PH=PE,∵P是∠BAC的平分线AD上一点,∴∠EAP=30°,∵PE⊥AC,∴∠AEP=90°,∴AE=AP×cos∠EAP=3,∵△FAP面积恰好是△EAP面积的2倍,PH=PE,∴AF=2AE=1,故答案为1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17、【解析】
利用总年龄除以总人数即可得解.【详解】解:由题意可得该班学生的平均年龄为.故答案为:14.4.【点睛】本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.18、﹣2<x<1【解析】
观察图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>-x>1解集.【详解】解:观察图象可知:图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>﹣x>1解集,∴﹣2<x<1,故答案为﹣2<x<1.【点睛】本题考查一次函数与不等式、两直线相交或平行问题等知识,解题的关键是学会利用图象法解决自变量的取值范围问题.三、解答题(共66分)19、,1【解析】
先提取公因式,再利用完全平方公式进行因式分解,将,代入求解即可.【详解】解:==∵其中,∴原式=1.【点睛】本题考查了因式分解的问题,掌握完全平方公式是解题的关键.20、(1)点D(1,0);(2)y=43x-43;(3)点F的坐标是(11,4)【解析】
(1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点D在线段OA上,且AD=7,即可求出点D的坐标;(2)利用待定系数法可求直线CD的解析式;(3)设点F(x,y),分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.【详解】解:(1)∵直线y=-x+8分别交两轴于点A,B,∴当x=0时,y=8,当y=0时,x=8∴点A(8,0),点B(0,8)∵点D在线段OA上,且AD=7.∴点D(1,0)(2)∵点C的横坐标为4,且在直线y=-x+8上,∴y=-4+8=4,∴点C(4,4)设直线CD的解析式y=kx+b∴4=4k+b0=k+b,解得:∴直线CD解析式为:y=43(3)设点F(x,y)①若以CD,AD为边,∵四边形ADCF是平行四边形,∴AC,DF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴4+82=1+x∴点F(11,4)②若以AC,AD为边∵四边形ADFC是平行四边形,∴AF,CD互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴8+x2=4+1∴点F(-3,4)③若以CD,AC为边,∵四边形CDFA是平行四边形,∴AD,CF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴1+82=4+x∴点F(5,-4)综上所述:点F的坐标是(11,4),(5,-4),(-3,4).【点睛】此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.21、(1)(2)【解析】
(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°-∠BAE-∠AEB=56°,∵在平行四边形ABCD中,∠D=∠B,∴∠D=56°.(2)∵DC∥AB,∴△CEF∽△BEA.∵BE=3EC∴,∵S△EFC=1.∴S△ABE=9a,∵∴∴∴∵∴【点睛】此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.22、路灯的高度是【解析】
根据题意结合图形可知,AP=OB,在P点时有,列出比例式进行即可即可【详解】解:由题意知:即解得答:路灯的高度是【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键23、(1)见解析;(2)m=0【解析】
(1)分该方程为一元二次方程和一元一次方程展开证明即可。(2)利用因式分解解该一元二次方程,求出方程的根,利用整数概念进行求值即可【详解】解:(1)当时,是关于x的一元二次方程。∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;当m=1时,是关于x的一元一次方程。∴-x+1=0∴x=1∴方程有实数根x=1∴不论m为何值时,方程总有实数根(2)分解因式得解得:∵方程有两个不相等的整数根∴为整数,∴且∴m=0【点睛】本题考查了根的判别式,掌握方程与根的关系,及因式分解解一元二次方程,和整数的概念是解题的关键.24、﹣x1﹣x+1,﹣2【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】(3x-1﹣x﹣1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规全真模拟考试试卷A卷含答案
- 2023年冷墩钢投资申请报告
- 金融岗位招聘笔试题及解答(某大型央企)2024年
- 2025年教师资格考试小学面试社会试题及解答参考
- 2024专业运动服装订货协议
- 2024年油品储备设施租赁协议范本
- 2024年度建筑项目施工责任担保协议
- 2024年楼宇外墙面刷新工程协议样本
- 2024商铺转租协议格式
- 文书模板-竞业协议核实流程
- 《城市污水源热泵》课件
- 2024年中冶城市投资控股有限公司招聘笔试参考题库含答案解析
- 物业扫黑除恶专项行动行动
- 静脉用药安全输注药护专家指引
- 陶艺教学课件
- 主播试用期合同模板正规范本(通用版)
- 悦纳自我向阳而生心理健康教育主题班会课件
- 艾略特的诗 中英
- 《高炉炉顶均压煤气及休风煤气回收技术要求》
- 专题1.2 绝对值的综合(压轴题专项讲练)2023-2024学年七年级数学上册压轴题专项讲练系列(人教版)(解析版)
- 大学生心理健康教育智慧树知到课后章节答案2023年下安徽中医药大学
评论
0/150
提交评论