版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.满足下列条件的,不是直角三角形的是()A. B.C. D.2.已知:a=,b=,则a与b的关系是()A.相等 B.互为相反数 C.互为倒数 D.平方相等3.如图,在菱形ABCD中,AB=16,∠B=60°,P是AB上一点,BP=10,Q是CD边上一动点,将四边形APQD沿宜线PQ折叠,A的对应点A'.当CA'的长度最小时,则CQA.10 B.12 C.13 D.144.对于函数y=-2x+5,下列说法正确的是()A.图象一定经过(2,-1) B.图象经过一、二、四象限C.图象与直线y=2x+3平行 D.y随x的增大而增大5.若代数式3-x在实数范围内有意义,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥36.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.7.(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH8.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t9.为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指()A.200B.我县2019年八年级学生期末数学成绩C.被抽取的200名八年级学生D.被抽取的200名我县八年级学生期末数学成绩10.下列各式:中,是分式的有()A.1个 B.2个 C.3个 D.4个11.如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为()A. B. C. D.12.如果平行四边形两条对角线的长度分别为,那么边的长度可能是()A. B. C. D.二、填空题(每题4分,共24分)13.若,则____.14.某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.15.分解因式:x2﹣7x=_____.16.若关于x的分式方程+2无解,则m的值为________.17.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为_____.18.对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.三、解答题(共78分)19.(8分)如图,已知直线的解析式为,直线的解析式为,与轴交于点,与轴交于点,与交于点.①的值.②求三角形的面积.20.(8分)21.(8分)求证:菱形的对角线互相垂直.22.(10分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.23.(10分)如图,已知四边形为平行四边形,于点,于点.(1)求证:;(2)若、分别为边、上的点,且,证明:四边形是平行四边形.24.(10分)A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城运往C、D两乡运肥料的费用分别是每吨20元和25元,从B城运往C、D两乡运肥料的费用分别为每吨15元和24元,现在C乡需要肥料240吨,D乡需要肥料260吨,设A城运往C乡的肥料量为x吨,总运费为y元.(1)写出总运费y元关于x的之间的关系式;(2)当总费用为10200元,求从A、B城分别调运C、D两乡各多少吨?(3)怎样调运化肥,可使总运费最少?最少运费是多少?25.(12分)如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:;(2)若,求当形ABCD的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.26.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【详解】A.,则a2+c2=b2,△ABC是直角三角形,故A正确,不符合题意;B.52+122=132,△ABC是直角三角形,故B正确,不符合题意;C.∠A:∠B:∠C=3:4:5,设∠A、∠B、∠C分别为3x、4x、5x,则3x+4x+5x=180°,解得,x=15°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故C选项错误,符合题意;D.∠A-∠B=∠C,则∠A=∠B+∠C,∠A=90°,△ABC是直角三角形,故D正确,不符合题意;故选C.【点睛】本题考查的是三角形内角和定理、勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、C【解析】因为,故选C.3、D【解析】
由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H,先求得BH、HC的长,则可得到PH的长,然后再求得PC的长,最后依据折叠的性质和平行线的性质可证明△CQP为等腰三角形,则可得到QC的长.【详解】由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H.在Rt△BCH中,∠B=60°,BC=16,则BH=12BC=8,CH=162-∴PH=1.在Rt△CPH中,依据勾股定理可知:PC=(83)由翻折的性质可知:∠APQ=∠A′PQ.∵DC∥AB,∴∠CQP=∠APQ.∴∠CQP=∠CPQ.∴QC=CP=2.故选:D.【点睛】本题主要考查的是两点之间线段最短、菱形的性质、勾股定理的应用,翻折的性质、等腰三角形的判定,判断出CA′取得最小值的条件是解题的关键.4、B【解析】
利用一次函数的性质逐个分析判断即可得到结论.【详解】A、把x=2代入代入y=-2x+5,得y=1≠-1,所以A不正确;B、∵k=-2<0,b=5>0,∴图象经过一、二、四象限,所以B正确;C、∵y=-2x+5与y=2x+3的k的值不相等,∴图象与直线y=2x+3不平行,所以C不正确;D、∵k=-2<0,∴y随x的增大而减小,所以D不正确;故选:B.【点睛】本题考查了两直线相交或平行,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.5、B【解析】
根据二次根式的被开方数是非负数列出不等式,解不等式即可.【详解】由题意得,3﹣x≥0,解得,x≤3,故选:B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.7、D【解析】
先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1
在直角三角形DCF中,∴矩形DCGH为黄金矩形
故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.8、B【解析】
根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.9、D【解析】
根据样本是总体中所抽取的一部分个体解答即可.【详解】本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.故选:D.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10、D【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:是分式,共4个故选:D.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.11、B【解析】
要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【详解】如图,连接AE,因为点C关于BD的对称点为点A,所以PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为3,BE=2,∴AE==,∴PE+PC的最小值是.故选:B.【点睛】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.12、B【解析】
根据平行四边形的对角线互相平分确定对角线的一半的长,然后利用三角形的三边关系确定边长的取值范围,从该范围内找到一个合适的长度即可.【详解】设平行四边形ABCD的对角线交于O点,∴OA=OC=4,OB=OD=6,∴6-4<BC<6+4,∴2<BC<10,∴6cm符合,故选:B.【点睛】考查了三角形的三边关系及平行四边形的性质,解题的关键是确定对角线的一半并根据三边关系确定边长的取值范围,难度不大.二、填空题(每题4分,共24分)13、1【解析】
由a+b-1ab=0得a+b.【详解】解:由a+b-1ab=0得a+b=1ab,=1,故答案为1.【点睛】本题考查了分式的化简求值,熟练运用分式的混合运算法则是解题的关键.14、20%【解析】
设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.【详解】设平均每次降价的百分率为x,根据题意列方程得250×(1-x)2=160,解得x1=0.2,2,x2=1.8(不符合题意,舍去),即该商品平均每次降价的百分率为20%,故答案为:20%.【点睛】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.15、x(x﹣7)【解析】
直接提公因式x即可.【详解】解:原式=x(x﹣7),故答案为:x(x﹣7).【点睛】本题主要考查了因式分解的运用,准确进行计算是解题的关键.16、1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.详解:去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.17、2【解析】
根据正方形的面积公式可求正方形面积.【详解】正方形面积==2故答案为2.【点睛】本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.18、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,三、解答题(共78分)19、①k=2,b=1;②1【解析】
①利用待定系数法求出k,b的值;
②先根据两个函数解析式计算出B、C两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【详解】解:①∵l1与l2交于点A(-1,2),
∴2=-k+4,2=1+b,
解得k=2,b=1;
②当y=0时,2x+4=0,
解得x=-2,
∴B(-2,0),
当y=0时,-x+1=0
解得x=1,
∴C(1,0),
∴△ABC的面积=×(2+1)×2=1.【点睛】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.20、3【解析】试题分析:利用平方差公式展开和二次根式的乘除法则运算;然后合并即可.试题解析:原式=7-5+3-2=2+1=3.21、详见解析【解析】
根据AD=AB,OD=OB,AO=AO,推得△AOD≌△AOB,所以对角线AC,BD互相垂直.【详解】已知:菱形ABCD中,AC,BD交于点O,求证:AC⊥BD.证明:∵四边形ABCD是菱形,∴AD=AB,OD=OB,又∵AO=AO,∴△AOD≌△AOB(SSS),∴∠AOD=∠AOB,又∵∠AOD+∠AOB=180°,∴∠AOD=90°,即
AC⊥BD.故菱形的对角线互相垂直.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.22、(1)画图略,A’(2,1)(2)(1,0)或(-1,-6)或(-5,-2)【解析】
(1)找到三角形各顶点与原点对称点,再连接各点即可;(2)根据平行四边形的性质即可在直角坐标系中找到D点.【详解】(1)如图,△A′B′C′为所求,A’(2,1)(2)如图,D的坐标为(1,0)或(-1,-6)或(-5,-2)【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的坐标特点.23、(1)见解析;(2)见解析.【解析】
(1)利用给出的条件证明即可解答.(2)先求出,再利用对边平行且相等的判定定理进行证明即可解答.【详解】(1)四边形是平行四边形,,..于,于,,,,(2)四边形是平行四边形,,,,且,,,且四边形是平行四边形【点睛】本题考查三角形全等的证明和平行四边形的判定,掌握其证明和判定方法是解题关键.24、(1)y=4x+10040(0≤x≤200);(2)从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的肥料量分别为100吨.(3)从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.【解析】
(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和(60+x)吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;(2)将y=10200代入(1)中的函数关系式可求得x的值;(3)根据(1)的解析式,由一次函数的性质就可以求出结论.【详解】(1)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨;B城运往C、D乡的肥料量分别为(240-x)吨和[260-(200-x)]=(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为y=20x+25(200-x)+15(240-x)+24(60+x)化简,得y=4x+10040(0≤x≤200)(2)将y=10200代入得:4x+10040=10200,解得:x=40,∴200-x=200-40=160,240-x=200,60+x=100,∴从A城运往C乡的肥料量为40吨,A城运往D乡的肥料量为160吨,B城运往C的肥料量分别为200吨,B城运往D的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规全真模拟考试试卷A卷含答案
- 2023年冷墩钢投资申请报告
- 金融岗位招聘笔试题及解答(某大型央企)2024年
- 2025年教师资格考试小学面试社会试题及解答参考
- 2024专业运动服装订货协议
- 2024年油品储备设施租赁协议范本
- 2024年度建筑项目施工责任担保协议
- 2024年楼宇外墙面刷新工程协议样本
- 2024商铺转租协议格式
- 文书模板-竞业协议核实流程
- 2023届高三化学二轮复习 基于思维模型建构的信息型无机制备实验难点突破 利用信息“防”得其所发言 课件
- 授课计划表(模板)
- GB/T 23794-2023企业信用评价指标
- 浙江工商大学论文开题报告PPT模板
- 高考历史考点命题双向细目表(很实用)
- 高考英语创设语境记忆3500词汇(短文语境、配套练习)05篇
- YY/T 1833.3-2022人工智能医疗器械质量要求和评价第3部分:数据标注通用要求
- 博物馆教育资源与当前语文课程融合的探究
- 地源热泵监理细则
- 小学一年级上册 综合实践教学课件
- 设备部-工作总结及-计划-课件
评论
0/150
提交评论