




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若一个多边形的内角和为360°,则这个多边形的边数是(
)A.3
B.4
C.5
D.62.五边形的内角和是()A.180° B.360° C.540° D.720°3.若最简二次根式2与是同类二次根式,则a的值为()A. B.2 C.﹣3 D.4.关于函数,下列说法正确的是()A.自变量的取值范围是 B.时,函数的值是0C.当时,函数的值大于0 D.A、B、C都不对5.已知函数y=2x+k﹣1的图象不经过第二象限,则()A.k<1 B.k>1 C.k≥1 D.k≤16.如图,点、在函数(,且是常数)的图像上,且点在点的左侧过点作轴,垂足为,过点作轴,垂足为,与的交点为,连结、.若和的面积分别为1和4,则的值为()A.4 B. C. D.67.在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是()A. B.C. D.8.如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③.其中不正确的结论有()A.1个 B.2个 C.3个 D.0个9.使代数式有意义的x的取值范围是()A.x≥0 B. C.x取一切实数 D.x≥0且10.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100° B.120° C.130° D.150°11.点在第象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限12.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是2二、填空题(每题4分,共24分)13.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为_____m.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.二次根式的值是________.16.若分式有意义,则的取值范围是_______________.17.已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.18.分解因式:.三、解答题(共78分)19.(8分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:评委(序号)1234567甲(得分)89949387959287乙(得分)87899195949689(1)甲、乙两位竞聘者得分的中位数分别是多少(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上20.(8分)如图,已知反比例函数y=的图像经过点A(-1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求a、k的值;(2)若一次函数y=mx+n图像经过点A和反比例函数图像上另一点,且与x轴交于M点,求AM的值:(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在一次数函数y=bx上,则b=______.21.(8分)直线与轴、轴分别交于两点,以为边向外作正方形,对角线交于点,则过两点的直线的解析式是__________.22.(10分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.23.(10分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7如果你是教练你会选拔谁参加比赛?为什么?24.(10分)按要求作答(1)解方程;(2)计算.25.(12分)下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告,让交警知道这个时段路口来往车辆的车速情况.26.已知:线段m、n和∠(1)求作:△ABC,使得AB=m,BC=n,∠B=∠;(2)作∠BAC的平分线相交BC于D.(以上作图均不写作法,但保留作图痕迹)
参考答案一、选择题(每题4分,共48分)1、B【解析】
利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.2、C【解析】
根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.【点睛】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.3、B【解析】
根据题意,它们的被开方数相同,列出方程求解.【详解】∵最简二次根式2与是同类二次根式,∴3a﹣1=a+3,解得a=2,故选:B.【点睛】此题考查同类二次根式的定义,最简二次根式的特点,正确理解题意列出方程是解题的关键.4、C【解析】
根据该函数的性质进行判断即可.【详解】A.根据可得,自变量的取值范围是,错误;B.将代入函数解析式中,无意义,错误;C.当时,,正确;D.A、B错误,C正确,故选项D错误;故答案为:C.【点睛】本题考查了函数的性质问题,掌握函数的定义以及性质是解题的关键.5、D【解析】
根据函数y=2x+k﹣1的图象不经过第二象限,可以得到k﹣1≤0,从而可以得到k的取值范围,本题得以解决.【详解】解:∵函数y=2x+k﹣1的图象不经过第二象限,∴k﹣1≤0,解得,k≤1,故选:D.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6、D【解析】
设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据的面积为1可求出ab=2,根据的面积为4列方程整理,可求出k.【详解】解:设点M(a,0),N(0,b),∵AM⊥x轴,且点A在反比例函数的图象上,∴点A的坐标为(a,),∵BN⊥y轴,同理可得:B(,b),则点C(a,b),∵S△CMN=NC•MC=ab=1,∴ab=2,∵AC=−b,BC=−a,∴S△ABC=AC•BC=(−b)•(−a)=4,即,∴,解得:k=6或k=−2(舍去),故选:D.【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.7、A【解析】
确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.【详解】函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,所以一次函数的图象经过一、二、四象限,故选A.【点睛】考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.8、A【解析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,∴正确的是①②,故选A.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.9、D【解析】试题分析:根据题意可得:当x≥0且3x﹣1≠0时,代数式有意义,解得:x≥0且.故选D.考点:1.二次根式有意义的条件;2.分式有意义的条件.10、C【解析】
根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,
∴PE=AD,PF=BC,
∵AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=25°,
∴∠EPF=130°,
故选:C.【点睛】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.11、A【解析】
根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.12、B【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题二、填空题(每题4分,共24分)13、2.2【解析】
作出图形,利用定理求出BD长,即可解题.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25,在Rt△BD中,∠DB=90°,D=2米,BD2+D2=B2,∴BD2+22=6.25,∴BD2=2.25,∵BD0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.【点睛】本题考查了勾股定理的实际应用,属于简单题,利用勾股定理求出BD的长是解题关键.14、41,3【解析】试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15、1【解析】
根据二次根式的性质进行化简即可得解.【详解】=|-1|=1.故答案为:-1.【点睛】此题主要考查了二次根式的化简,注意:.16、【解析】【分析】根据分式有意义的条件进行求解即可得.【详解】由题意得:x-1≠0,解得:x≠1,故答案为:x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.17、3或1【解析】
过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.【详解】解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,∴当x=0时,y=4当y=0时,x=-2∴点A(-2,0),点B(0,4)如图:过点P作PE⊥x轴,交线段AB于点E∴点E横坐标为-1,∴y=-2+4=2∴点E(-1,2)∴|m-2|=1∴m=3或1故答案为:3或1【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.三、解答题(共78分)19、(1)甲得分中位数为:92(分),乙得分中位数为:91(分);(2)甲平均得分:91(分),乙平均得分:91.6(分),平均得分看应该录用乙;(3)专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上.【解析】
(1)将甲、乙二人的成绩分别排序找出中间位置的一个数即可,(2)根据算术平均数的计算方法求平均数即可,(3)根据加权平均数的求法设出权数,列不等式解答即可.【详解】(1)甲得分:87878992939495,中位数为:92(分),乙得分:87898991949596,中位数为:91(分);(2)甲平均得分:甲=92+(-3+2+1-5+3+0-5)=91(分),乙平均得分:乙=92+(-5-3-1+3+2+4-3)≈91.6(分),从平均得分看应该录用乙;(3)设专家评委组赋的权至少为x时,甲的平均得分比乙的平均得分多0.5分及以上,(89+94+93)x+(87+95+92+87)(1-x)≥(87+89+91)x+(95+94+96+89)(1-x)即:276x+361-361x≥267x+374-374x解得:x≥≈0.6所以,专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上。【点睛】考查中位数、算术平均数、加权平均数的意义及计算方法,理解权重对平均数的影响是解决问题的关键.20、(1),;(2);(3).【解析】
(1)根据点A的坐标以及三角形的面积公式即可求出a值,再根据反比例函数图象上点的坐标特征即可求出k的值;(2)根据反比例函数解析式可求出点C的坐标,由点A、C的坐标利用待定系数法即可求出直线AM的解析式,令线AM的解析式中y=0求出x值,即可得出点M的坐标,再利用勾股定理即可求出线段AM的长度;(3)设点N的坐标为(m,n),由等边三角形的性质结合两点间的距离公式即可得出关于m、n的二元二次方程组,解方程组即可得出n与m之间的关系,由此即可得出b值.【详解】解:(1)∵,∴,∴,∴把A点的坐标为,代入得;(2)∵在反比例函数的图象上,∴,∴,∴,将,代入y=mx+n中,得,解得:,∴直线AM解析式为:,当时,,∴,在中,,,∴;(3)设点N的坐标为(m,n),∵△AMN为等边三角形,且AM=,A(-1,),M(2,0),∴,解得:,∵顶点N(m,n)在一次函数y=bx上,∴b=.【点睛】本题考查了三角形的面积公式、反比例函数图象上点的坐标特征、勾股定理以及解二元二次方程组,解题的关键是:(1)求出点A的坐标;(2)求出点M的坐标;(3)根据等边三角形的性质找出关于m、n的二元二次方程组.本题属于中档题,难度不大,解决该题型题目时,根据等边三角形的性质利用两点间的距离公式找出点的横纵坐标之间的关系是关键.21、【解析】
分别过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,再证明△BEG≌△AEF,得出EG=EF,从而可得出结论.【详解】解:过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,∵四边形ABCD为正方形,∴BE=AE,且∠AEB=90°,∴∠BEG+∠AEG=∠AEG+∠AEF,∴∠BEG=∠AEF,又∠BGE=∠AFE=90°,∴△BEG≌△AEF(ASA),∴EF=EG.所以设过OE两点的直线的函数解析式为y=kx(k≠0),点E的坐标为(a,a),代入可得a=ak,解得k=1,∴过两点的直线的解析式是为y=x.故答案为:y=x.【点睛】本题主要考查解析式的求法,正方形的性质以及全等三角形的判定与性质,正确构造全等三角形是解题的关键.22、(1)证明见解析;(2).【解析】
(1)根据两直线平行内错角相等及折叠特性判断;(2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.【详解】(1)证明:根据折叠得,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD-DF=8-x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,解得x=,即BF=,∴,∴FG=2FO=.【点睛】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.23、乙同学的成绩较稳定,应选乙参加比赛【解析】试题分析:比较甲、乙两人的成绩的方差作出判断.试题解析:=(7+8+6+8+6+5+9+10+4+7)=7;
S甲2=[(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;=(9+5+7+8+6+8+7+6+7+7)=7;
S乙2=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顶管施工合同(知识研究版本)
- 湖南省益阳市名校2025年初三考试生物试题分类汇编含解析
- 河北省石家庄市藁城区实验学校2025年三年级数学第二学期期末学业质量监测试题含解析
- 洛阳科技职业学院《智慧供应链管理实训》2023-2024学年第二学期期末试卷
- 山东交通职业学院《生物化学双语》2023-2024学年第二学期期末试卷
- 江海职业技术学院《文学概论2》2023-2024学年第一学期期末试卷
- 民办合肥经济技术职业学院《工程项目认知实践》2023-2024学年第一学期期末试卷
- 南京财经大学红山学院《几何学基础》2023-2024学年第一学期期末试卷
- 兰州现代职业学院《施工技术与组织设计》2023-2024学年第二学期期末试卷
- 湖北省巴东三中2025届高三下学期质量检查英语试题试卷含解析
- 青岛商场分级管理制度
- 广东省历年中考作文题(2000-2023)
- 书法艺术疗愈在书法教育中的实践与应用研究
- 射频电路封装设计与工艺实现方法研究
- 线路工初级测试题含答案
- 体检中心质量控制指南
- 2025年广东中考试题数学及答案
- 四川2024年12月四川省内江市事业单位公开选调2名工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 《预防未成年人犯罪》课件(图文)
- 煤矿岗位标准化作业流程
- 全国网信系统网络安全协调指挥技术系统建设指南
评论
0/150
提交评论