2023年甘肃省武威市第二十三中学数学八下期末达标检测模拟试题含解析_第1页
2023年甘肃省武威市第二十三中学数学八下期末达标检测模拟试题含解析_第2页
2023年甘肃省武威市第二十三中学数学八下期末达标检测模拟试题含解析_第3页
2023年甘肃省武威市第二十三中学数学八下期末达标检测模拟试题含解析_第4页
2023年甘肃省武威市第二十三中学数学八下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若点A(3,2)与B(-3,m)关于原点对称,则m的值是()A.3 B.-3 C.2 D.-22.方程3+9=0的根为()A.3 B.-3 C.±3 D.无实数根3.如图,在四边形中,与相交于点,,那么下列条件中不能判定四边形是菱形的为()A.∠OAB=∠OBA B.∠OBA=∠OBC C.AD∥BC D.AD=BC4.如图,在中,,,,为边上一动点,于点,于点,则的最小值为()A.2.4 B.3 C.4.8 D.55.下列变形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)6.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形

②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2

④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.47.甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是()A.甲 B.乙 C.丙 D.丁8.李华根据演讲比赛中九位评委所给的分数制作了表格:如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()平均数中位数众数方差8.5分8.3分8.1分0.15A.平均数 B.众数 C.方差 D.中位数9.下面的多边形中,内角和与外角和相等的是()A. B.C. D.10.下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为()A.1B.2C.3D.4二、填空题(每小题3分,共24分)11.如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.12.一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.13.如果关于x的方程没有实数根,则k的取值范围为______.14.若代数式在实数范围内有意义,则x的取值范围为_____.15.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是______(精确到0.01).16.不等式的负整数解有__________.17.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.18.正比例函数图象与反比例函数图象的一个交点的横坐标为,则______.三、解答题(共66分)19.(10分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.20.(6分)某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边为何值时,活动区的面积达到?21.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC关于点O的中心对称的△A(2)画出△ABC绕点O顺时针旋转90∘后的△(3)求(2)中线段BC扫过的面积.22.(8分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.(1)求证:四边形AECF是平行四边形;(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.23.(8分)如图1,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′.(1)求证:△ABD≌△ACD′;(1)如图1,若∠BAC=110°,探索BD,DE,CE之间满足怎样的数量关系时,△CD′E是正三角形;(3)如图3,若∠BAC=90°,求证:DE1=BD1+EC1.24.(8分)某经销商从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)700100售价(元/台)900160他计划一次性购进这两种品牌计算器共100台(其中A品牌计算器不能超过50台),设该经销商购进A品牌计算器x台(x为整数),这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求A品牌计算器不得少于48台,求该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?25.(10分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.26.(10分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.(1)求证:∠CBF=∠BCE;(2)若点G、M、N在线段BF、BC、CE上,且FG=MN=CN.求证:MG=NF;(3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】∵点A(3,2)与B(-3,m)关于原点对称,∴m=-2,故选D.【点睛】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.2、D【解析】原方程可化为:,∵负数没有平方根,∴原方程无实数根.故选D.3、A【解析】

根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.【详解】A.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADB,∠CBD=∠CDB,∵∠OAB=∠OBA,∴∠OAB=∠OBA=45°,∵OC与OA的关系不确定,∴无法证明四边形ABCD的形状,故此选项正确;B.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADA,∠CBD=∠CDB,∵∠OBA=∠OBC,∴∠ABD=∠ADB=∠CBD=∠CDB,BD=BD,∴△ABD≌△CBD,∴AB=BC=AD=CD,∴四边形ABCD是菱形,故此选项错误;C.∵AD∥BC,∴∠DAC=∠ACB,∵∠AOD=∠BOC,BO=DO,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误;D.∵AD=BC,BO=DO,∠BOC=∠AOD=90°,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误.故选:A.【点睛】此题考查菱形的判定,解题关键在于掌握菱形的三种判定方法.4、C【解析】

根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选C.【点睛】此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.5、D【解析】

根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、等式不成立,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点睛】此题考查因式分解的意义,解题关键在于掌握其定义6、C【解析】

根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7、A【解析】

比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.【详解】∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,∴,∴成绩最稳定的同学是甲.故选A.【点睛】此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.8、D【解析】

由一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数;接下来根据中位数的定义,结合去掉一个最高分和一个最低分,不难得出答案.【详解】解:中位数是将一组数从小到大的顺序排列,取中间位置或中间两个数的平均数得到,所以如果要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选D.【点睛】本题主要考查平均数、众数、方差、中位数的定义,其中一组按大小顺序排列起来的数据中处于中间位置的数叫做中位数.9、B【解析】

根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=1.故选:B.【点睛】此题考查多边形内角(和)与外角(和),解题关键掌握运算公式.10、D【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;③算术平方根还可能是1,故算术平方根一定是正数结论错误;④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,错误的结论①②③④,故选D.【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.二、填空题(每小题3分,共24分)11、y=2x-3.【解析】

根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.【详解】∵AB=2,点A的坐标为(0,1),∴OB=1,∴点B坐标为(0,-1),∵点E(2,1),∴AE=2,ED=AD-AE=1,∵EF平分矩形ABCD的面积,∴BF=DE,∴点F的坐标为(1,-1),设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,∴1=2k+b解得k=2,b=-3∴EF的解析式为y=2x-3.故答案为:y=2x-3.【点睛】本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.12、【解析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.13、【解析】

根据判别式的意义得到△=(-3)2-4×(-2k)<0,然后解不等式即可.【详解】根据题意得△=(-3)2-4×(-2k)<0,解得.故答案为.【点睛】本题考查根的判别式和解不等式,解题的关键是掌握根的判别式和解不等式.14、x≥﹣2且x≠1.【解析】

根据被开方式是非负数,且分母不等于零解答即可.【详解】若代数式在实数范围内有意义,则x+2≥0且x﹣1≠0,解得:x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.15、0.1.【解析】

根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率都在0.1上下波动,∴该射手击中靶心的概率的估计值是0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.16、-5、-4、-3、-2、-1【解析】

求出不等式的解集,取解集范围内的负整数即可.【详解】解:移项得:合并同类项得:系数化为1得:即所以原不等式的负整数解为:-5、-4、-3、-2、-1故答案为:-5、-4、-3、-2、-1【点睛】本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.17、1【解析】

先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.18、4【解析】

把x=代入各函数求出对应的y值,即可求解.【详解】x=代入得x=代入得∴4【点睛】此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.三、解答题(共66分)19、(1)证明见解析;(2).【解析】

(1)根据两直线平行内错角相等及折叠特性判断;(2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.【详解】(1)证明:根据折叠得,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD-DF=8-x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,解得x=,即BF=,∴,∴FG=2FO=.【点睛】此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.20、当时,活动区的面积达到【解析】

根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y,则由题意得.即列方程:解得(舍),.∴当时,活动区的面积达到【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.21、(1)见解析;(2)见解析;(3)154【解析】

(1)根据中心对称的性质找出各个对应点的坐标,顺次连接即可;(2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;(3)BC扫过的面积=S扇形OBB1−S扇形OCC1,由此计算即可.【详解】(1)如图(2)如图(3)BC扫过的面积=S扇形OBB1−S扇形OCC1=【点睛】本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.22、(1)见解析;(2)1【解析】

(1)由平行四边形的性质得出AE∥FC,再由三角形的外角的性质,以及折叠的性质,可以证明∠FAE=∠CEB,进而证明AF∥EC,即可得出结论;(2)由折叠的性质得:GE=BE,GC=BC,由△GCE的周长得出GE+CE+GC=20,BE+CE+BC=20,由平行四边形的性质得出AF=CE,AE=CF=5,即可得出结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AE∥FC,∵点E是AB边的中点,∴AE=BE,∵将△BCE沿着CE翻折,点B落在点G处,∴BE=GE,∠CEB=∠CEG,∴AE=GE,∴∠FAE=∠AGE,∵∠CEB=∠CEG=∠BEG,∠BEG=∠FAE+∠AGE,∴∠FAE=∠BEG,∴∠FAE=∠CEB,∴AF∥EC,∴四边形AECF是平行四边形;(2)解:由折叠的性质得:GE=BE,GC=BC,∵△GCE的周长为20,∴GE+CE+GC=20,∴BE+CE+BC=20,∵四边形AECF是平行四边形,∴AF=CE,AE=CF=5,∴四边形ABCF的周长=AB+BC+CF+AF=AE+BE+BC+CE+CF=5+20+5=1.【点睛】本题主要考查了翻折变换的性质、平行四边形的判定与性质、平行线的判定、等腰三角形的性质以及三角形的外角性质等知识;熟练掌握翻折变换的性质,证明四边形AECF是平行四边形是解题的关键.23、(1)见解析;(1)BD=DE=CE的数量关系时,△CD′E是正三角形;(3)见解析.【解析】

(1)根据轴对称的性质得到AD=AD`,即可证明△ABD≌△ACD′(1)由(1)可得∠BAD=∠CAD′,∠B=∠ACD′,再根据轴对称的性质得到∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,得到△CD′E是正三角形,即可解答(3)利用勾股定理即可解答【详解】(1)证明:∵△ADE与△AD′E是关于AE的轴对称图形,∴AD=AD′,在△ABD和△ACD′中,,∴△ABD≌△ACD′(SSS);(1)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∠B=∠ACD′,∵△ADE与△AD′E是关于AE的轴对称图形,∴∠DAE=∠EAD′,DE=ED′,∴∠EAD′+∠CAE=∠BAD+∠CAE=∠DAE=∠BAC=60°,∵△CD′E是正三角形,∴CE=CD′=ED′,∵BD=CD′,DE=ED′,∴BD=DE=CE;(3)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠ECD′=90°,∴ED′1=CD′1+EC1,∵BD=CD′,DE=ED′,∴DE1=BD1+EC1.【点睛】此题考查全等三角形的判定与性质,勾股定理,等边三角形的判定与性质,解题关键在于利用全等三角形的性质进行解答24、(1)y=140x+1;(2)三种方案,见解析;(3)选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.【解析】

(1)根据利润=售价-成本,总利润=单位利润×销售量,可以求出y与x之间的函数关系式;

(2)A品牌计算器不能超过50台,A品牌计算器不得少于48台,确定自变量的取值范围,再由自变量是整数,可得由几种方案;

(3)根据一次函数的增减性,和自变量的取值范围,确定何时利润最大,并求出最大利润.【详解】(1)y=(900-700)x+(160-100)(100-x)=140x+1,答:y与x之间的函数关系式为:y=140x+1.(2)由题意得:48≤x≤50x为整数,因此x=48或x=49或x=50,故有三种进货方案,即:①A48台、B52台;②A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论