版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分2.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是()A.①② B.②③ C.①②③ D.①②③④3.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25 B.18 C.9 D.94.计算的结果是()A. B. C. D.5.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.106.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为()A. B. C. D.7.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,-120°) B.Q(3,240°) C.Q(3,-500°) D.Q(3,600°)8.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53° B.37° C.47° D.123°9.一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,四边形ABCD是长方形,四边形AEFG是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若∠BCF=30°,CD=4,CF=6,则正方形AEFG的面积为()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;12.如图,在矩形中,,,是边的中点,点是边上的一动点,将沿折叠,使得点落在处,连接,,当点落在矩形的对称轴上,则的值为______.13.为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)14.在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。15.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是_______.17._______18.如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.三、解答题(共66分)19.(10分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.(1)求中巴车和大客车各有多少个座位?(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?20.(6分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.21.(6分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形(1)以A为顶点的平行四边形;(2)以A为对角线交点的平行四边形.22.(8分)如图,⊙O为ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且EACABC.(1)求证:直线AE是⊙O的切线;(2)若D为AB的中点,CD3,AB8.①求⊙O的半径;②求ABC的内心I到点O的距离.23.(8分)某公司招聘职员,对甲、乙两位候选人进行了面试,面试中包括形体、口才、专业知识,他们的成绩(百分制)如下表:(1)如果公司根据经营性质和岗位要求,以面试成绩中形体、口才、专业知识按照的比值确定成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)如果公司根据经营性质和岗位要求,以面试成绩中形体占,口才占,专业知识占确定成绩,那么你认为该公司应该录取谁?24.(8分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接写出结论;(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.图1图225.(10分)化简:.26.(10分)如图,矩形ABCD中,点E在BC上,AE=CE,试分别在下列两个图中按要求使用无刻度的直尺画图.(1)在图1中,画出∠DAE的平分线;(2)在图2中,画出∠AEC的平分线.
参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、D【解析】
易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.【详解】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③④.故选D.【点睛】考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.3、D【解析】
根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.【详解】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30°,∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,∴AF=AC=2a﹣1,CF=AF=(2a﹣1),OF=OA﹣AF=11﹣2a,∴点D(a,a),点C[11﹣2a,(2a﹣1)].∵点C、D都在双曲线y=上(k>0,x>0),∴a•a=(11﹣2a)×(2a﹣1),解得:a=3或a=1.当a=1时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=1舍去.∴点D(3,3),∴k=3×3=9.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.4、A【解析】
根据二次根式性质求解.【详解】根据得=3故答案为:A【点睛】考核知识点:算术平方根性质.理解定义是关键.5、B【解析】
解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.6、A【解析】
根据已知点的坐标变换发现规律进行求解.【详解】根据题意得(2,0)变化后的坐标为(1,0);(2,4)变化后的坐标为(1,4);故P点(a,b)变化后的坐标为故选A.【点睛】此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.7、C【解析】
根据中心对称的性质进行解答即可.【详解】∵P(3,60°)或P(3,﹣300°)或P(3,420°)∴点P关于点O成中心对称的点Q的极坐标为Q(3,240°)或(3,-120°)或(3,600°),∴C选项不正确,故选C.【点睛】本题考查了极坐标的定义,中心对称,正确理解极坐标的定义、熟练掌握中心对称的性质是解题的关键.8、B【解析】
设CE与AD相交于点F.∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°.∴∠DFC=37°∵四边形ABCD是平行四边形,∴AD∥BC.∴∠BCE=∠DFC=37°.故选B.9、C【解析】
一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.【详解】解:∵-3<1,∴图象经过二、四象限;
又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.
所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.
故选:C.【点睛】一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.10、A【解析】
由矩形和正方形的性质得出AD∥EF∥BC,AB=CD=4,∠B=90°,证出四边形EFCH平行四边形,∠BHE=∠BCF=30°,得出EH=CF=6,由含30°角的直角三角形的性质求出BE=3,得出AE的长,即可得出正方形的面积.【详解】∵四边形ABCD是矩形,四边形AEFG是正方形,
∴AD∥EF∥BC,AB=CD=4,∠B=90°,
又∵EH∥FC,
∴四边形EFCH平行四边形,∠BHE=∠BCF=30°,
∴EH=CF=6,
∴BE=EH=3,
∴AE=AB-BE=4-3=1,
∴正方形AEFG的面积=AE2=1;
故选:A.【点睛】本题考查了正方形的性质、矩形的性质、平行四边形的判定与性质、含30°角的直角三角形的性质;熟记性质并求出四边形EFCH平行四边形是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得BC=,在Rt△ABC中,根据勾股定理,得AC=故答案为【点睛】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.12、2【解析】
根据旋转的性质在三角形EHG中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.【详解】解:如下图过点E作EH垂直对称轴与H,连接BG,∵,,∴BE=EG=1,EH=,∴∠EGH=30°,∴∠BEG=30°,由旋转可知∠BEF=15°,BG⊥EF,∴∠EBG=75°,∠GBF=∠BCG=15°,即∴m=2故答案是:2【点睛】本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.13、抽样调查.【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14、0<a<1【解析】
已知点P(a-1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.【详解】∵点P(a-1,a)是第二象限内的点,∴a-1<0且a>0,解得:0<a<1.故答案为:0<a<1.【点睛】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+).15、1.【解析】试题解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案为1.16、(5,4).【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【详解】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为(5,4).17、2019【解析】
直接利用平方差公式即可解答【详解】=2019【点睛】此题考查平方差公式,解题关键在于掌握运算法则18、.【解析】
利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.【详解】解:如图,设直线OC与直线AB的交点为点D,一次函数的图象与x轴、y轴分别交于点A、B,、,,,,将沿直线AB翻折得到,,,.故答案是:.【点睛】考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.三、解答题(共66分)19、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.【解析】试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.(1)在保证学生都有座位的前提下,有三种租车方案:①单独租用中巴车,需要租车辆,可以计算费用.②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有解之得:x1=45,x1=﹣90(不合题意,舍去).经检验x=45是分式方程的解,故大客车有座位:x+15=45+15=60个.答:每辆中巴车有座位45个,每辆大客车有座位60个.(1)解法一:①若单独租用中巴车,租车费用为×350=1100(元)②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)③设租用中巴车y辆,大客车(y+1)辆,则有45y+60(y+1)≥170解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求这时租车费用为350×1+400×3=1900(元)故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.解法二:①、②同解法一③设租用中巴车y辆,大客车(y+1)辆,则有350y+400(y+1)<1000解得:.由y为整数,得到y=1或y=1.当y=1时,运送人数为45×1+60×1=165<170,不合要求舍去;当y=1时,运送人数为45×1+60×3=170,符合要求.故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.考点:一元一次不等式的应用;解一元二次方程-因式分解法;分式方程的应用.20、(1)30元,32元(2)(3)当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B品牌的计算机更合算.【解析】
(1)根据“购买2个A品牌和3个B品牌的计算器共需156元”和“购买3个A品牌和1个B品牌的计算器共需122元”列方程组求解即可.(2)根据题意分别列出函数关系式.(3)由、、列式作出判断.【详解】解:(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:,解得.答:A,B两种品牌计算机的单价分别为30元,32元.(2)由题意可知:,即.当时,;当时,,即.(3)当购买数量超过5个时,.①当时,,解得,即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;②当时,,解得,即当购买数量为30个时,购买两种品牌的计算机花费相同;③当时,,解得,即当购买数量超过30个时,购买B品牌的计算机更合算.21、(1)见解析;(2)见解析【解析】
(1)直接利用平行四边形的性质分析得出答案;(2)直接利用菱形的性质得出符合题意的答案.【详解】解:(1)如图所示:平行四边形ABCD即为所求;(2)如图所示:平行四边形DEFM即为所求.【点睛】此题考查应用设计与作图,正确应用网格分析是解题关键.22、(1)见解析;(2)①⊙O的半径r=256;②ABC的内心I到点O的距离为【解析】
(1)连接AO,证得EACABC=12∠AOC,∠CAO=90∘-12∠AOC(2)①设⊙O的半径为r,则OD=r-3,在△AOD中,根据勾股定理即可得出②作出ABC的内心I,过I作AC,BC的垂线,垂足分别为F,G.设内心I到各边的距离为a,由面积法列出方程求解可得答案.【详解】(1)如图,连接AO则EACABC=12又∵AO=BO,∴ACO=CAO=180∴EAO=EAC+CAO=12AOC+90∘∴EA⊥AO∴直线AE是⊙O的切线;(2)①设⊙O的半径为r,则OD=r-3,∵D为AB的中点,∴OC⊥AB,ADO=90∘,∴AD2+O解得r=②如下图,∵D为AB的中点,∴AC=BC=且CO是∠ACB的平分线,则内心I在CO上,连接AI,BI,过I作AC,BC的垂线,垂足分别为F,G.易知DI=FI=GI,设其长为a.由面积可知:S即1解得a=∴OI=DI+DO=∴ABC的内心I到点O的距离为5【点睛】本题考查了圆的切线的判定,垂径定理,圆周角定理等知识,是中考常见题.23、(1)甲将被录取;(2)公司录取乙.【解析】
(1)由形体、口才、专业知识按照的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,
(2)由面试成绩中形体占,口才占,笔试成绩中专业知识占,,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.【详解】解:(1)甲的平均成绩:,乙的平均成绩:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业销售培训劳动合同范本(2024版)
- 人教版小学语文六年级上册教案全册教案
- 2024年度电气设备防雷保护系统升级改造合同
- 《上期期末家长会》课件
- 2024年度大型货车租赁安全管理合同2篇
- 2024中国移动福建公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电建集团昆明勘测设计研究院限公司招聘100人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信北京公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国交建招聘中交天航滨海公司专业人才71人易考易错模拟试题(共500题)试卷后附参考答案
- 2024东海航空深圳宝安区宝安机场招聘效益支持专员(广东)易考易错模拟试题(共500题)试卷后附参考答案
- 刮泥机出厂检测调试报告
- 工业管道基础知识PPT课件
- GB∕T 29639-2020 生产经营单位生产安全事故应急预案编制导则
- 运动处方知识点
- 部编版二年级语文上册第七单元备课教学设计
- 英语口语绕口令Englishtonguetwisters
- 《八字新大陆》教材内部辅导讲义
- 轴心受压构件的计算长度系数
- (完整版)《加油站委托管理合同》(标准版)
- 深圳市建设工程施工许可(提前开工核准)申请表
- 纸箱抗压计算
评论
0/150
提交评论