版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点O在ABC内,且到三边的距离相等,若∠A=60°,则∠BOC的大小为()A.135° B.120° C.90° D.60°2.如图,已知点A(0,9),点B是x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC使点C在第一象限,∠BAC=90°.设点B的横坐标为x,点C的纵坐标为y则表示y与x的函数关系的图象大致是()A. B.C. D.3.如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式()A. B. C. D.4.将直线y=﹣4x向下平移2个单位长度,得到的直线的函数表达式为()A.y=﹣4x﹣2 B.y=﹣4x+2 C.y=﹣4x﹣8 D.y=﹣4x+85.下列命题,其中正确的有()①平行四边形的两组对边分别平行且相等②平行四边形的对角线互相垂直平分③平行四边形的对角相等,邻角互补④平行四边形只有一组对边相等,一组对边平行A.1个 B.2个 C.3个 D.4个6.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282° B.180° C.258° D.360°7.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,若矩形的对角线长为4,则AD的长是()A.2 B.4 C.2 D.48.下列各式中,能与合并的二次根式是()A. B. C. D.9.下列图形中,不是中心对称图形的是()A.平行四边形 B.矩形 C.菱形 D.等边三角形10.电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为()A. B. C. D.二、填空题(每小题3分,共24分)11.反比例函数与一次函数的图像的一个交点坐标是,则=________.12.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.13.如图,线段AB两个点的坐标分别为A2.5,5,B5,0,以原点为位似中心,将线段AB缩小得到线段CD,若点D的坐标为2,0,则点C的坐标为14.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA﹣AB﹣BC的路径再回到C点,需要____分的时间.15.将一次函数的图象向上平移个单位得到图象的函数关系式为________________.16.如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.17.Rt△ABC中,∠C=90°,∠B=30°,则AC与AB两边的关系是_____.18.在平面直角坐标系xOy中,直线与x轴的交点为A,与y轴的交点为B,且,则k的值为_____________.三、解答题(共66分)19.(10分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形20.(6分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t(秒)。(1)当点P运动t秒后,AP=____________(用含t的代数式表示);(2)若四边形ABQP为平行四边形,求运动时间t;(3)当t为何值时,△BPQ是以BQ或BP为底边的等腰三角形;21.(6分)如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.(1)证明:BE=AG;(2)E位于什么位置时,∠AEF=∠CEB?说明理由.22.(8分)如图,在平面直角坐标系中,一次函数(,、为常数)的图象与反比例函数的图象交于第二、四象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为-1.(1)求一次函数的解析式;(2)连接、,求的面积.23.(8分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.24.(8分)如图,点A的坐标为(﹣32(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.25.(10分)如图,在中,是边上的高,的平分线交于点,于点,请判断四边形的形状,并证明你的结论.26.(10分)如图,△ABC三个顶点的坐标分别是A1,1(1)请画出△ABC向左平移5个单位长度后得到的△A(2)请画出△ABC关于原点对称的△A(3)在x轴上求点P的坐标,使PA+PB的值最小.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.【详解】∵O到三边的距离相等∴BO平分∠ABC,CO平分∠ACB∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.2、A【解析】
过点C作CD⊥y轴于点D,证明△CDA≌△AOB(AAS),则AD=OB=x,y=OA+AD=9+x,即可求解.【详解】解:过点C作CD⊥y轴于点D,∵∠OAB+∠OBA=90°,∠OAB+∠CAD=90°,∴∠CAD=∠ABO,∵∠CDA=∠AOB=90°,AB=AC,∴△CDA≌△AOB(AAS),∴AD=OB=x,y=OA+AD=9+x,故选:A.【点睛】本题主要考查全等三角形的性质及一次函数的图象,掌握一次函数的图象及全等三角形的性质是解题的关键3、A【解析】
由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,可用待定系数法确定直线DE的表达式.【详解】解:由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,设直线的表达式为,将点,代入得:解得所以直线的表达式为故答案为:A【点睛】本题主要考查了平行四边形中心对称的性质及待定系数法求直线表达式,明确直线过平行四边形对角线的交点是解题的关键.4、A【解析】
上下平移时k值不变,b值是上加下减,依此求解即可.【详解】解:将直线y=﹣4x向下平移2个单位长度,得到直线y=﹣4x﹣2;故选:A.【点睛】此题考查了一次函数图象与几何变换.要注意求直线平移后的解析式时k的值不变,只有b发生变化.5、B【解析】
根据平行四边形的性质判断即可.【详解】解:①平行四边形的两组对边分别平行且相等,正确;②平行四边形的对角线互相平分,但不一定垂直,错误;③平行四边形的对角相等,邻角互补,正确;④平行四边形两组对边分别平行且相等,不是只有一组相等,一组平行,错误,正确的有2个.故选B.【点睛】本题考查了平行四边形的性质,平行四边形的两组对边分别平行且相等,对角线互相平分,对角相等,邻角互补,熟练掌握平行四边形的性质是解题的关键.6、C【解析】
先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.故选C.【点睛】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.7、C【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD=4,推出AO=OB=2,得出等边三角形AOB,可得AB=2,由勾股定理可求AD的长.【详解】∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD=4,∴AO=OB=2,∵∠AOB=60°,∴△AOB是等边三角形,∴∠ABO=60°,AB=2=OA∴故选:C.【点睛】本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.8、B【解析】
先化成最简二次根式,再判断即可.【详解】解:A、不能与合并,故本选项不符合题意;B、=,能与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=4,不能与合并,故本选项不符合题意.【点睛】本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.9、D【解析】
根据中心对称图形的概念中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、平行四边形是中心对称图形,故本选项错误;B、矩形是中心对称图形,故本选项错误;C、菱形是中心对称图形,故本选项错误;D、等边三角形不是中心对称图形,故本选项正确.故选D.10、D【解析】
乘以分母的有理化因式即可完成化简.【详解】解:.故选D.【点睛】本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.二、填空题(每小题3分,共24分)11、-6【解析】
根据题意得到ab=2,b-a=3,代入原式计算即可.【详解】∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),∴b=,b=a+3,∴ab=2,b-a=3,∴==2×(-3)=-6,故答案为:-6【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=312、20°【解析】
先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形13、1,2【解析】
利用点B和点D的坐标之间的关系得到线段AB缩小2.5倍得到线段CD,然后确定C点坐标.【详解】解:∵将线段AB缩小得到线段CD,点B(5,0)的对应点D的坐标为(2.0),∴线段AB缩小2.5倍得到线段CD,∴点C的坐标为(1,2).【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.14、1【解析】
运用勾股定理可求出斜边AB的长,然后可求出直角三角形的周长即蜗牛所走的总路程,再除以蜗牛的行走速度即可求出所需的时间.【详解】解:由题意得,100cm,∴AB=100cm;∴CA+AB+BC=60+80+100=240cm,∴240÷20=1(分).故答案为1.【点睛】本题考查了速度、时间、路程之间的关系式及勾股定理的应用,考查了利用勾股定理解直角三角形的能力.15、.【解析】
根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.【详解】解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.故答案为:.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.16、【解析】
过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=5,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=25,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=25,,即DQ+PQ的最小值为.【点睛】本题考查了轴对称-最短路线问题、勾股定理、作图与基本作图等知识点的应用,解此题的关键是根据轴对称的性质找出P'点,题型较好,难度较大.17、AB=2AC.【解析】
解:如图所示,在Rt△ABC中,∠C=90°,∠B=30°,则AB=2AC.故答案为AB=2AC.【点睛】本题考查了在直角三角形中,30°所对的直角边等于斜边的一半,应熟练掌握.18、【解析】
先根据解析式确定点A、B的坐标,再根据三角形的面积公式计算得出答案.【详解】令中y=0得x=-,令x=0得y=2,∴点A(-,0),点B(0,2),∴OA=,OB=2,∵,∴,解得k=,故答案为:.【点睛】此题考查一次函数图象与坐标轴的交点,一次函数与几何图形面积,正确理解OA、OB的长度是解题的关键.三、解答题(共66分)19、见解析;【解析】
欲证明四边形BFDE是平行四边形只要证明OE=OF,OD=OB.【详解】证明:∵四边形ABCD是平行四边形∴AO=CO,BO=DO.又∵点E,点F分别是OA,OC的中点∴EO=,FO=∴EO=FO∴四边形BEDF为平行四边形【点睛】本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.20、(1)10-2t;(2)t=2(3)t=74或t=8【解析】
(1)根据AP=AD-DP即可写出;(2)当四边形ABQP为平行四边形时,AP=BQ,即可列方程进行求解;(3)分两种情况讨论:①若PQ=BQ,在Rt△PQE中,由PQ2=PE2+EQ2,PQ=BQ,将各数据代入即可求解;②若PB=PQ,则BQ=2EQ,列方程即可求解.【详解】(1)∵动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,∴AP=AD-DP=10-2t,故填:10-2t;(2)∵四边形ABQP为平行四边形时,∴AP=BQ,∵BQ=BC-CQ=8-t,∴10-2t=8-t,解得t=2,(3)如图,过点P作PE⊥BC于E,①当∠BQP为顶角时,PQ=BQ,BQ=8-t,PE=CD=6,EQ=CE-CQ=2t-t=t,在Rt△PQM中,由PQ2=PE2+EQ2,又PQ=BQ,∴(8-t)2=62+t2,解得t=7②当∠BPQ为顶角时,则BP=PQ由BQ=2EQ,即8-t=2t解得t=8故t=74或t=83【点睛】此题主要考查四边形的动点问题,解题的关键是熟知等腰三角形的性质及勾股定理列出方程进行求解.21、(1)见解析;(2)当点E位于线段AB中点时,∠AEF=∠CEB,理由见解析【解析】
(1)根据正方形的性质利用ASA判定△GAB≌△EBC,根据全等三角形的对应边相等可得到AG=BE;(2)利用SAS判定△GAF≌△EAF,从而得到∠AGF=∠AEF,由△GAB≌△EBC可得到∠AGF=∠CEB,则∠AEF=∠CEB.【详解】(1)证明:∵四边形ABCD是正方形∴∠ABC=∠BAD=90°,∴∠1+∠3=90°,∵BG⊥CE,∴∠BOC=90°∴∠2+∠3=90°,∴∠1=∠2,在△GAB和△EBC中,∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,∴△GAB≌△EBC(ASA),∴AG=BE;(2)解:当点E位于线段AB中点时,∠AEF=∠CEB,理由如下:若当点E位于线段AB中点时,则AE=BE,由(1)可知,AG=BE,∴AG=AE,∵四边形ABCD是正方形,∴∠GAF=∠EAF=45°,又∵AF=AF,∴△GAF≌△EAF(SAS),∴∠AGF=∠AEF,由(1)知,△GAB≌△EBC,∴∠AGF=∠CEB,∴∠AEF=∠CEB.【点睛】考查了全等三角形的判定,正方形的性质等知识点,利用全等三角形来得出线段相等是这类题的常用方法.22、(1);(2).【解析】
(1)利用待定系数法求得反比例函数的解析式,即可得出点B的坐标,再求出一次函数的解析式即可;(2)利用一次函数求得C点坐标,再根据割补法即可得出△AOB的面积.【详解】(1)解:∵,,∴点的坐标为,则,得.∴反比例函数的解析式为,∵点的纵坐标是-1,∴,得.∴点的坐标为.∵一次函数的图象过点、点.∴,解得:,即直线的解析式为.(2)∵与轴交与点,∴点的坐标为,∴,∴.【点睛】本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立方程求解,若方程有解则有交点,反之无交点.23、高铁列车平均速度为300km/h.【解析】
设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,利用高铁列车行驶时间比原特快列车行驶时间缩短了3小时,这一等量关系列出方程解题即可【详解】设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,由题意得:+3=,解得:x=100,经检验:x=100是原方程的解,则3×100=300(km/h);答:高铁列车平均速度为300km/h.【点睛】本题考查分式方程的简单应用,本题关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新能源电动汽车充电桩安装承包合同4篇
- 2025年度砖厂设备更新与承包合同4篇
- 二零二五年度高校讲师聘请合同(含教学与科研)2篇
- 二零二五版场地绿化调查与规划服务合同模板3篇
- 2025版民办医疗机构设备采购与维修服务合同4篇
- 二零二五版过敏性疾病患者个性化治疗方案合同3篇
- 2024预包装食品仓储物流服务外包合同范本2篇
- 食堂就餐环境优化合同(2025年度)3篇
- 2025年度交通运输履约保函服务标准3篇
- 二零二五年度二零二五智能城市建设项目合作协议4篇
- 天津市武清区2024-2025学年八年级(上)期末物理试卷(含解析)
- 《徐霞客传正版》课件
- 江西硅博化工有限公司年产5000吨硅树脂项目环境影响评价
- 高端民用航空复材智能制造交付中心项目环评资料环境影响
- 量子医学成像学行业研究报告
- DB22T 3268-2021 粮食收储企业安全生产标准化评定规范
- 办事居间协议合同范例
- 正念减压疗法详解课件
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 重大事故隐患判定标准与相关事故案例培训课件
- 高中语文新课标必背古诗文72篇
评论
0/150
提交评论