版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是()A.3cm B.6cm C.9cm D.12cm2.下列根式是最简二次根式的是()A.2 B.23 C.9 D.3.函数中,自变量x的取值范围是A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠04.如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为()A.22 B.11 C.8 D.55.一次函数y=3x-2的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限6.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为()A. B.2020 C.2019 D.20187.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°8.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1 B.1.5 C.2 D.2.59.如图,在△ABC中,点D、E分别是AB、AC的中点,如果DE=3,那么BC的长为().A.4 B.5 C.6 D.710.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.1211.(2017广西贵港第11题)如图,在中,,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是()A. B. C. D.12.不等式组的解集为()A.x> B.x>1 C.<x<1 D.空集二、填空题(每题4分,共24分)13.若关于x的一元二次方程x2+x+a=0有实数根,则a的取值范围为14.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于__.15.两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。16.如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为_________.17.一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.18.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.三、解答题(共78分)19.(8分)顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形的两条对角线______,就能使中点四边形是菱形;(2)只要原四边形的两条对角线______,就能使中点四边形是矩形;(3)请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,把它画出来.20.(8分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数。(2)若AC=2,求AD的长。21.(8分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.22.(10分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.23.(10分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.24.(10分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.25.(12分)如图,在▱ABCD中,E为边AB上一点,连结DE,将▱ABCD沿DE翻折,使点A的对称点F落在CD上,连结EF.(1)求证:四边形ADFE是菱形.(1)若∠A=60°,AE=1BE=1.求四边形BCDE的周长.小强做第(1)题的步骤解:①由翻折得,AD=FD,AE=FE.②∵AB∥CD.③∴∠AED=∠FDE.④∴∠AED=∠ADE⑤∴AD=AE⑥∴AD=AE=EF=FD∴四边形ADFE是菱形.(1)小强解答第(1)题的过程不完整,请将第(1)题的解答过程补充完整(说明在哪一步骤,补充什亻么条件或结论)(1)完成题目中的第(1)小题.26.如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.求证:.
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,问题得解.【详解】解:∵四边形ABCD为平行四边形,
∴BO=DO,
∵点E是AB的中点,
∴OE为△ABD的中位线,
∴AD=2OE,
∵OE=3cm,
∴AD=6cm.
故选B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单,熟记平行四边形的各种性质是解题关键.2、A【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、3是最简二次根式,符合题意;B、23=6C、9=3,不符合题意;D、12=23,不符合题意;故选A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、C【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.4、B【解析】
根据算术平均数的计算方法列方程求解即可.【详解】由平均数的计算公式得:(-3+x+0+1+x+6+9+5)=5解得:x=11,故选:B.【点睛】考查算术平均数的计算方法,利用方程求解,熟记计算公式是解决问题的前提,是比较基础的题目.5、B【解析】
因为k=3>0,b=-2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第二象限.【详解】对于一次函数y=3x-2,∵k=3>0,∴图象经过第一、三象限;又∵b=-2<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,∴一次函数y=3x-2的图象不经过第二象限.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.6、B【解析】
对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=1,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7、D【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8、B【解析】
作DH⊥BC于H,得到△DEB是等腰直角三角形,设DH=BH=EH=a,证明△CDH∽△CAB,得到,求得AB=,CE=2a,根据得到,利用阴影面积=求出答案.【详解】作DH⊥BC于H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠ABD=∠DBC=45°,∴△DEB是等腰直角三角形,设DH=BH=EH=a,∵DH∥AB,∴△CDH∽△CAB,∴,∵AD=1,∴AC=4,∴,∴AB=,CE=2a,∵,∴,∴=1,∴,∴图中阴影部分的面积====故选:B.【点睛】此题考查等腰直角三角形的判定及性质,相似三角形的判定及性质,求不规则图形的面积,根据阴影图形的特点确定求面积的方法进而进行计算是解答问题的关键.9、C【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【详解】解:∵点D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE=2×3=1.
故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记定理是解题的关键.10、B【解析】试题分析:设多边形的边数为n,则=135,解得:n=8考点:多边形的内角.11、B【解析】试题解析:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12、B【解析】
先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(每题4分,共24分)13、a≤【解析】
根据一元二次方程的定义和根的判别式得到△=b2-4ac≥0,然后求出不等式的解即可.【详解】解:∵x2∴△=b2-4ac≥0即1-4a≥0,解得:即a的取值范围为:a≤【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.14、.【解析】
一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合图象经过第一、三、四象限,判断k的取值范围,进而求出k的值.【详解】解:∵一次函数y=kx﹣2与两坐标轴的交点分别为,,∴与两坐标轴围成的三角形的面积S=,∴k=,∵一次函数y=kx﹣2的图象经过第一、三、四象限,∴k>0,∴k=,故答案为:.【点睛】本题考查了一次函数图象的特征、一次函数与坐标轴交点坐标的求法、三角形面积公式.利用三角形面积公式列出方程并求解是解题的关键.15、40cm,100cm【解析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.∵周长之比等于相似比.∴10/25=x/(x+60).解得x=40cm,x+60=100cm.16、1.【解析】试题分析:∵▱ABCD的周长为20cm,∴2(BC+CD)=20,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,即△DOE的周长为1.故答案是1.考点:三角形中位线定理.17、1【解析】
利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.【详解】解:x2-5x+4=0,
(x-1)(x-4)=0,
所以x1=1,x2=4,
当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
故答案是:1.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.18、30°【解析】
根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为30°.三、解答题(共78分)19、(1)相等;(2)垂直;(3)见解析【解析】
(1)根据菱形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,即可得到四边形ABCD满足的条件.【详解】解:(1)顺次连接对角线相等的四边形的四边中点得到的是菱形;(2)顺次连接对角线垂直的四边形的四边中点得到的是矩形;(3)如图,已知点E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,AC=BD且AC⊥BD,则四边形EFGH为正方形,∵E、F分别是四边形ABCD的边AB、BC的中点,∴EF∥AC,EF=AC,同理,EH∥BD,EH=BD,GF=BD,GH=AC,∵AC=BD,∴EF=EH=GH=GF,∴平行四边形ABCD是菱形.∵AC⊥BD,∴EF⊥EH,∴四边形EFGH是正方形,故顺次连接对角线相等且垂直的四边形的四边中点得到的四边形是正方形,故答案为:相等,垂直.【点睛】本题考查了中点四边形的判定,以及三角形的中位线定理和矩形的性质,正确证明四边形EFMN是平行四边形是关键.20、(1)∠BAC=75°(2)AD=.【解析】试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.(1)∠BAC=180°-60°-45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,考点:本题主要考查勾股定理、三角形内角和定理点评:解答本题的关键是根据三角形内角和定理推出AD=DC.21、(1)60;(2)图形见解析,“基本了解”部分所对应扇形的圆心角的大小为90°.【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数;
(2)由(1)可求得了解的人数,继而补全折线统计图;求得扇形统计图中“基本了解”部分所对应扇形的圆心角;【详解】(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);“了解”的人数为:(人);补全统计图,如图所示:扇形统计图中“基本了解”部分所对应扇形的圆心角为:22、EC=1【解析】
根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】∵四边形ABCD为矩形,
∴DC=AB=8cm;∠B=∠C=90°;
由题意得:AF=AD=10,
设EF=DE=xcm,EC=8-x;
由勾股定理得:BF2=102-82,
∴BF=6,
∴CF=10-6=4;
在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,
解得:x=5,
EC=8-5=1.
故答案为:1【点睛】此题主要考查了翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.23、(1)证明见解析;(2)14.【解析】试题分析:(1)先证明四边形CODE是平行四边形,再利用菱形的性质得到直角,证明四边形CODE是矩形.(2)由勾股定理可知OD长,OC是AC一半,所以可知矩形的周长.试题解析:(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴□CODE是矩形;(2)在菱形ABCD中,OC=AC=×6=3,CD=AB=5,在Rt△COD中,OD=,∴四边形CODE的周长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年通信设备采购与维护合同2篇
- 电梯安装工程2025年度技术咨询合同6篇
- 二零二五年度论坛活动策划服务合同模板6篇
- 二零二五版搬家服务及家居清洁维护合同3篇
- 二零二五年度废钢市场供应与环保处理服务合同3篇
- 二零二五版房屋买卖及邻里关系协调服务合同3篇
- 二零二五年度股东干股合作企业社会责任履行合同3篇
- 幼儿园2025年度食品供应合同2篇
- 二零二五版租赁房屋改造装修合同3篇
- 二零二五年酒店股权分割与资产重组咨询合同3篇
- 2023社会责任报告培训讲稿
- 2023核电厂常规岛及辅助配套设施建设施工技术规范 第8部分 保温及油漆
- 2025年蛇年春联带横批-蛇年对联大全新春对联集锦
- 表B. 0 .11工程款支付报审表
- 警务航空无人机考试题库及答案
- 空气自动站仪器运营维护项目操作说明以及简单故障处理
- 新生儿窒息复苏正压通气课件
- 法律顾问投标书
- 班主任培训简报4篇(一)
- 成都市数学八年级上册期末试卷含答案
- T-CHSA 020-2023 上颌骨缺损手术功能修复重建的专家共识
评论
0/150
提交评论