2023年河北省保定市第十七中学八年级数学第二学期期末达标检测试题含解析_第1页
2023年河北省保定市第十七中学八年级数学第二学期期末达标检测试题含解析_第2页
2023年河北省保定市第十七中学八年级数学第二学期期末达标检测试题含解析_第3页
2023年河北省保定市第十七中学八年级数学第二学期期末达标检测试题含解析_第4页
2023年河北省保定市第十七中学八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是()物体的质量(kg)012345弹簧的长度(cm)1012.51517.52022.5A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm2.下列交通标志是轴对称图形的是()A. B. C. D.3.下列各组数中不能作为直角三角形的三边长的是()A.3,4,5 B.13,14,15 C.5,12,13 D.15,8,174.16的值是()A.±4 B.4 C.﹣4 D.±25.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)6.下列四种标志图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.7.如图,在中,,,,点为斜边上一动点,过点作于,于点,连结,则线段的最小值为()A. B. C. D.8.不能使四边形ABCD是平行四边形是条件是()A.AB=CD,BC=AD B.AB=CD,C. D.AB=CD,9.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.39.39.39.3方差0.0250.0150.0350.023则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁10.大肠杆菌的长度平均约为0.0000014米,把这个数用科学记数表示正确的是()米.A.1.4×106 B.1.4×10﹣5 C.14×10﹣7 D.1.4×10﹣611.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DG,则A′G的长是()A.1 B. C. D.212.如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是().A.x2 B.x2或1x0C.1x0 D.x2或x1二、填空题(每题4分,共24分)13.已知直角三角形的两条边为5和12,则第三条边长为__________.14.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.15.函数中,自变量x的取值范围是.16.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.17.(-4)2的算术平方根是________

64的立方根是

_______18.地图上某地的面积为100cm1,比例尺是l:500,则某地的实际面积是_______m1.三、解答题(共78分)19.(8分)如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.20.(8分)如图,在直角坐标系中,A(0,4)、C(3,0),(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(8分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.

(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;

(2)在同一直角坐标系中画出(1)中函数的图象;

(3)春节期间如何选择这两家商场去购物更省钱?22.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).捐款额(元)频数百分比37.5%717.5%ab1025%615%总计100%(1)填空:________,________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在的学生人数.23.(10分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.24.(10分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,请判断△ABC的形状;(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.25.(12分)为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:价格甲乙进价(元/件)mm+20售价(元/件)150160如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.(1)求m的值;(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?26.计算:+(π﹣3)0﹣()﹣1+|1﹣|

参考答案一、选择题(每题4分,共48分)1、B【解析】

因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选B.点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2、C【解析】试题分析:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3、B【解析】

分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.【详解】解:A选项中,,∴能构成直角三角形;B选项中,,∴不能构成直角三角形;C选项中,,∴能构成直角三角形;D选项中,,∴能构成直角三角形;故选B.【点睛】本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.4、B【解析】

由于16表示16的算术平方根,所以根据算术平方根的定义即可得到结果.【详解】∵4∴16故选:B.【点睛】本题主要考查算术平方根的定义,一个非0数的算术平方根是正数,算术平方根容易与平方根混淆,学习中一定要熟练区分之.5、D【解析】

利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【详解】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b),故选D.【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.6、B【解析】

根据轴对称图形和中心对称图形的意义逐个分析即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选B.【点睛】考核知识点:理解轴对称图形和中心对称图形的定义.7、C【解析】

连接PC,先证明四边形ECFP是矩形,从而得EF=PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.8、D【解析】

根据平行四边形的判定即可得.【详解】A、,即两组对边分别相等,能使四边形ABCD是平行四边形,此项不符题意B、,即一组对边平行且相等,能使四边形ABCD是平行四边形,此项不符题意C、,即两组对边分别平行,能使四边形ABCD是平行四边形,此项不符题意D、,即一组对边相等,另一组对边平行,这个四边形有可能是等腰梯形,则不能使四边形ABCD是平行四边形,此项符合题意故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题关键.9、B【解析】

根据方差的定义,方差越小数据越稳定,对题目进行分析即可得到答案.【详解】因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、D【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为(为整数),与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】.故选:D.【点睛】本题主要考查了科学记数法的表示,熟练掌握相关表示方法是解决本题的关键.11、C【解析】

由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′G=x,由勾股定理即可得:x2+4=(4-x)2,解此方程即可求得答案.【详解】∵四边形ABCD是矩形,∴∴由折叠的性质,可得:A′D=AD=3,A′G=AG,∴A′B=BD−A′D=5−3=2,设A′G=x,则AG=x,BG=AB−AG=4−x,在Rt△A′BG中,∴解得:∴故选:C.【点睛】考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.12、B【解析】

根据交点坐标及图象的高低即可判断取值范围.【详解】要使,则一次函数的图象要高于反比例函数的图象,∵两图象交于点A(2,1)、B(-1,-2),∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,∴使的x的取值范围是:或.故选:B.【点睛】本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.二、填空题(每题4分,共24分)13、1或【解析】

因为不确定哪一条边是斜边,故需要讨论:①当12为斜边时,②当12是直角边时,根据勾股定理,已知直角三角形的两条边就可以求出第三边.【详解】解:①当12为斜边时,则第三边==;

②当12是直角边时,第三边==1.

故答案为:1或.【点睛】本题考查了勾股定理的知识,难度一般,但本题容易漏解,在不确定斜边的时候,一定不要忘记讨论哪条边是斜边.14、1【解析】

画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周长为1cm.

故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.15、.【解析】

∵在实数范围内有意义,∴∴故答案为16、y=﹣x+【解析】

在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=(4﹣t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式【详解】解:∵A(0,4),B(3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+22=(4﹣t)2,解得t=,∴C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得∴直线BC的解析式为y=﹣x+故答案为y=﹣x+.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.17、4,4【解析】【分析】根据算术平方根和立方根的意义可求解.【详解】因为42=16,43=64,所以,(-4)2的算术平方根是4,

64的立方根是4.故答案为:(1).4,(2).4【点睛】本题考核知识点:算术平方根,立方根.解题关键点:理解算术平方根,立方根的定义.18、1500【解析】

设某地的实际面积为xcm1,则100:x=(1:500)1,解得x=15000000cm1.15000000cm1=1500m1.∴某地的实际面积是1500平方米.三、解答题(共78分)19、(1)1353;(2)y=.【解析】

(1)根据函数图形可得,甲、丙两地距离为:2+153=1353(千米);(2)分两种情况:当3≤x≤1时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(3,2),(1,3)代入得到方程组,即可解答;根据确定高速列出的速度为133(千米/小时),从而确定点A的坐标为(1.5,153),当1<x≤1.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(1,3),(1.5,153)代入得到方程组,即可解答.【详解】解:(1)根据函数图形可得,甲、丙两地距离为:2+153=1353(千米),故答案为2.(2)当3≤x≤1时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(3,2),(1,3)代入得:,解得:,∴y=﹣133x+2,高速列出的速度为:2÷1=133(千米/小时),153÷133=3.5(小时),1+3.5=1.5(小时)如图2,点A的坐标为(1.5,153)当1<x≤1.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(1,3),(1.5,153)代入得:,解得:,∴y=133x﹣2,∴.考点:一次函数的应用.20、(1)①作图见解析;②作图见解析;(2)k=3【解析】试题分析:(1)、根据题意画出图形;(2)、将面积平分的直线经过平行四边形ABCD的对角线交点(1.5,2).试题解析:(1)(2)k=考点:(1)、平行四边形的性质;(2)、一次函数的性质.21、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【解析】

(1)根据两家商场的让利方式分别列式整理即可;(2)利用两点法作出函数图象即可;(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.【详解】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x-200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)当0.8x=0.7x+60时,x=600,所以,x<600时,甲商场购物更省钱,x=600时,甲、乙两商场购物更花钱相同,x>600时,乙商场购物更省钱.【点睛】本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.22、(1),;(2)详见解析;(3)估计这次活动中爱心捐款额在的学生有1200人【解析】

(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;

(2)根据所求数据补全图形即可得;

(3)利用可以求得.【详解】(1)样本容量=3÷0.75%=40,∴,.(2)补图如下.(3)(人).答:估计这次活动中爱心捐款额在的学生有1200人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23、(1)25米;(2)234米2【解析】

(1)连接AC,利用勾股定理求出AC即可;(2)利用勾股定理的逆定理证明∠ADC=90°,计算两个直角三角形面积即可解决问题【详解】(1)连接AC.在RtΔABC中,由勾股定理得:AC=AB2(2)在ΔADC中,∵AD∴∠ADC=90°.∴S四边形ABCD=【点睛】本题考查勾股定理及其逆定理的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24、(1)y=x+1;(2)△ABC是等腰直角三角形;(3)存在,点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.【解析】

(1)利用待定系数法,即可得到直线AD的解析式;(2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;(3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.【详解】解:(1)直线AD的解析式为y=kx+b,∵直线AD经过点A(1,2),点D(0,1),∴,解得,∴直线AD的解析式为y=x+1;(2)∵y=x+1中,当y=0时,x=﹣1;y=﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论