![2023年江苏省徐州市锥宁县八年级数学第二学期期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view/d407e9413eba452f2f2aec8ae6a0a657/d407e9413eba452f2f2aec8ae6a0a6571.gif)
![2023年江苏省徐州市锥宁县八年级数学第二学期期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view/d407e9413eba452f2f2aec8ae6a0a657/d407e9413eba452f2f2aec8ae6a0a6572.gif)
![2023年江苏省徐州市锥宁县八年级数学第二学期期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view/d407e9413eba452f2f2aec8ae6a0a657/d407e9413eba452f2f2aec8ae6a0a6573.gif)
![2023年江苏省徐州市锥宁县八年级数学第二学期期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view/d407e9413eba452f2f2aec8ae6a0a657/d407e9413eba452f2f2aec8ae6a0a6574.gif)
![2023年江苏省徐州市锥宁县八年级数学第二学期期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view/d407e9413eba452f2f2aec8ae6a0a657/d407e9413eba452f2f2aec8ae6a0a6575.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列标志中,可以看作是轴对称图形的是()A. B. C. D.2.已知a为整数,且<<,则a等于()A.1 B.2 C.3 D.43.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形 B.平行四边形 C.正五边形 D.正三角形4.对于函数y=-2x+5,下列说法正确的是()A.图象一定经过(2,-1) B.图象经过一、二、四象限C.图象与直线y=2x+3平行 D.y随x的增大而增大5.若分式有意义,则x,y满足()A.2x≠y B.x≠0且y≠0 C.2x=y D.2x+y=06.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程=1有非负整数解的概率是()A. B. C. D.7.下列运算错误的是A. B.C. D.8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A. B. C. D.9.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:510.直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x+c的解集为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__12.如图,在矩形纸片中,,折叠纸片,使点落在边上的点处,折痕为,当点在边上移动时,折痕的端点,也随之移动,若限定点,分别在,边上移动,则点在边上可移动的最大距离为__________.13.命题“如a2>b2,则a>b”的逆命题是■命题(填“真”或“假”).14.一次函数(k,b为常数,)的图象如图所示,根据图象信息可得到关于x的方程的解为__________.15.如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.16.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)18.当x=__________时,分式无意义.三、解答题(共66分)19.(10分)如图,为线段上一动点,分别过点作,,连接.已知,设.(1)用含的代数式表示的值;(2)探究:当点满足什么条件时,的值最小?最小值是多少?(3)根据(2)中的结论,请构造图形求代数式的最小值.20.(6分)如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点在的延长线上,点落在轴正半轴上.(1)证明:是等边三角形:(2)平行四边形绕点逆时针旋转度.的对应线段为,点的对应点为①直线与轴交于点,若为等腰三角形,求点的坐标:②对角线在旋转过程中设点坐标为,当点到轴的距离大于或等于时,求的范围.21.(6分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.22.(8分)已知x=+1,y=-1,求x2+xy+y2的值.23.(8分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)24.(8分)如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE//CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.25.(10分)2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,35403045(1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.(2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;(3)求最低总运费,并说明总运费最低时的运送方案.26.(10分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.2、D【解析】
根据实数的估算即可求解.【详解】∵<<,=4∴a=4故选D.【点睛】此题主要考查实数的估算,解题的关键是熟知实数的性质.3、A【解析】试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合.考点:轴对称图形与中心对称图形.4、B【解析】
利用一次函数的性质逐个分析判断即可得到结论.【详解】A、把x=2代入代入y=-2x+5,得y=1≠-1,所以A不正确;B、∵k=-2<0,b=5>0,∴图象经过一、二、四象限,所以B正确;C、∵y=-2x+5与y=2x+3的k的值不相等,∴图象与直线y=2x+3不平行,所以C不正确;D、∵k=-2<0,∴y随x的增大而减小,所以D不正确;故选:B.【点睛】本题考查了两直线相交或平行,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.5、A【解析】
根据分母不能为零,可得答案.【详解】由题意,得2x﹣y≠0,解得y≠2x,故选A.【点睛】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.6、C【解析】
先解出不等式组,找出满足条件的a的值,然后解分式方程,找出满足非负整数解的a的值,然后利用同时满足不等式和分式方程的a的个数除以总数即可求出概率.【详解】解不等式组得:,由不等式组至少有四个整数解,得到a≥﹣3,∴a的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a﹣x+2=x﹣3,解得:x=,∵分式方程有非负整数解,∴a=5、3、1、﹣3,则这9个数中所有满足条件的a的值有4个,∴P=故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7、A【解析】
根据二次根式的加减法、乘法、除法逐项进行计算即可得.【详解】A.与不是同类二次根式,不能合并,故错误,符合题意;B.,正确,不符合题意;C.=,正确,不符合题意;D.,正确,不符合题意.故选A.【点睛】本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.8、C【解析】
由折叠的性质可得DE=BE,设AE=xcm,则BE=DE=(9-x)cm,在Rt中,由勾股定理得:32+x2=(9-x)2解得:x=4,∴AE=4cm,∴S△ABE=×4×3=6(cm2),故选C.9、D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.10、B【解析】
根据函数的图象得出两函数的交点坐标,再根据图象即可得出答案.【详解】∵根据图象可知:两函数的交点坐标为(1,-2),∴关于x的不等式k1x+b>k2x+c的解集是x>1,故选B.【点睛】本题考查了一次函数与一元一次不等式的性质,能根据函数的图象得出两函数的交点坐标是解此题的关键.二、填空题(每小题3分,共24分)11、【解析】
过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm.∴AD=a,∴DE·AD=a,∴DE=2.当点F从D到B时,用s,∴BD=.Rt△DBE中,BE=.∵ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a=2+(a-1),解得a=.【点睛】此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;12、1【解析】
分别利用当点M与点A重合时,以及当点N与点C重合时,求出AH的值进而得出答案.【详解】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,
如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,
在Rt△HCB中,HC2=BC2+HB2,即132=(13-AH)2+52,
解得:AH=1,
所以点H在AB上可移动的最大距离为5-1=1.
故答案为:1.【点睛】本题主要考查的是折叠的性质、勾股定理的应用,注意利用翻折变换的性质得出对应线段之间的关系是解题关键.13、假【解析】先写出命题的逆命题,然后在判断逆命题的真假.解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=-2,此时a>b,但a2<b2,即此命题为假命题.故答案为假.14、x=1【解析】
直接根据图象找到y=kx+b=4的自变量的值即可.【详解】观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,4),所以关于x的方程kx+b=4的解为x=1,故答案为:x=1.【点睛】本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键.15、1【解析】
根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.【详解】解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,∴DE=AB=6,∴EF=DE-DF=6-2=4,∵AF=CF,AE=EB,∴EF是三角形ABC的中位线,∴BC=2EF=1,故答案为:1.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.16、120°10【解析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.17、【解析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,∴AC=a,CF=b,由勾股定理得,AF==,∵∠ACF=90°,H是AF的中点,∴CH=,故答案为:.【点睛】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.18、1【解析】
根据分式无意义的条件:分母等于0,进行计算即可.【详解】∵分式无意义,∴,∴.故答案为:1.【点睛】本题考查分式有无意义的条件,明确“分母等于0时,分式无意义;分母不等于0时,分式有意义”是解题的关键.三、解答题(共66分)19、(1);(2)三点共线时;(3)2【解析】试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.(1);(2)当三点共线时,的值最小.(3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.过点作交的延长线于点,得矩形,则,1.所以,即的最小值为2.考点:本题考查的是轴对称-最短路线问题点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.20、(1)见解析(2)①P(0,)或(0,-4)②-8≤m≤-或≤m≤1【解析】
(1)根据A点坐标求出∠AOF=60°,再根据旋转的特点得到AO=AF,故可求解;(2)①设P(0,a)根据等腰三角形的性质分AP=OP和AO=OP,分别求出P点坐标即可;②分旋转过程中在第三象限时到轴的距离等于与旋转到第四象限时到轴的距离等于,再求出当旋转180°时的坐标,即可得到m的取值.【详解】(1)如图,过A点作AH⊥x轴,∵∴OH=2,AH=2∴AO=故AO=2OH∴∠OAH=30°∴∠AOF=90°-∠OAH=60°∵旋转∴AO=AF∴△AOF是等边三角形;(2)①设P(0,a)∵是等腰三角形当AP=OP时,(2-0)2+(2-a)2=a2解得a=∴P(0,)当AO=OP时,OP=AO=4∴P(0,-4)故为等腰三角形时,求点的坐标是(0,)或(0,-4);②旋转过程中点的对应点为,当开始旋转,至到轴的距离等于时,m的取值为-8≤m≤-;当旋转到第四象限,到轴的距离等于时,m=当旋转180°时,设C’的坐标为(x,y)∵C、关于A点对称,∴解得∴(1,)∴m的取值为≤m≤1,综上,当点到轴的距离大于或等于时,求的范围是-8≤m≤-或≤m≤1.【点睛】此题主要考查旋转综合题,解题的关键是熟知等边三角形的判定、等腰三角形的性质、勾股定理、对称性的应用.21、两船相距200,画图见解析.【解析】
根据题意画出图形,利用勾股定理求解即可.【详解】解:如图所示,∵甲船从港口出发,以80的速度向东行驶,∴MA=80×2=160(km),∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,∴MB=80×1.5=120(km),∴(km),∴上午8:00时,甲、乙两船相距200km.【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.22、7【解析】
根据二次根式的加减法法则、平方差公式求出x+y、xy,利用完全平方公式把所求的代数式变形,代入计算即可.【详解】∵x=+1,y=-1,∴x+y=(+1)+(-1)=2,xy=(+1)(-1)=1,∴x2+xy+y2=x2+2xy+-xy=-xy=-1=7.故答案为:7.【点睛】本题考查二次根式的化简求值,灵活运用平方差公式是解题的关键.23、2.3m【解析】
根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.【详解】在Rt△ABD中,∠BAD=18°,AB=9m,∴BD=AB×tan18°≈2.92m,∴CD=BD-BC=2.92-0.5=2.42m,在Rt△CDE中,∠CDE=72°,CD≈2.42m,∴CE=CD×sin72°≈2.3m.答:CE的高为2.3m.【点睛】本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.24、(1)证明见解析;(2)AB=.【解析】
(1)根据AAS证明△ABE≌△DCF,由全等三角形对应边相等得到BE=CF,根据一组对边平行且相等的四边形是平行四边形即可得到结论;(2)利用全等三角形的性质证明AB=CD即可得出结论.【详解】(1)∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国植物蛋白饮料行业市场运行动态及投资发展潜力分析报告
- 高中物理题型解题技巧之电磁学篇11 等效阻抗秒解变压器动态问题(原卷版)
- 2.2 长度与时间的测量(课件)2022-2023学年八年级物理上学期同步
- 二零二五年度装配式建筑造价工程师聘用协议4篇
- Module4 Unit2 The apples are falling down the stairs.教学课件-六年级英语下册课堂外研版三起
- 《甜津津的河水》课件
- 《高位胆管癌的护理》课件
- 《运动品牌标志》课件
- 02.冠词【知识精研】小学英语语法专项系列 (人教PEP版)
- 2025至2031年中国圆底计量罐行业投资前景及策略咨询研究报告
- 毛戈平-+毛戈平深度报告:再论毛戈平商业模式与核心壁垒:个人IP+化妆学校+线下服务
- 山东省潍坊市2024-2025学年高三上学期1月期末考试生物试卷含答案
- 人教版(2025新版)七年级下册数学第七章 相交线与平行线 单元测试卷(含答案)
- 春节节后复工全员安全意识提升及安全知识培训
- 道路运输企业主要负责人和安全生产管理人员安全考核试题库(含参考答案)
- 贵州省贵阳市2023-2024学年高一上学期期末考试 物理 含解析
- 行政事业单位会计实操
- 中国燃气建设工程竣工验收暂行规定
- 春尺蠖测报办法
- 岩海动测仪器及软件使用说明1
- 家谱宗谱WORD模板
评论
0/150
提交评论