版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.5 B.6 C.8 D.102.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.43.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠34.如图所示,一场台风过后,垂直于地面的一棵树在距地面1米处折断,树尖B
恰好碰到地面,经测量AB=2,则树高为()米.A.1+ B.1+ C.2-1 D.35.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC6.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()A.A组,B组平均数及方差分别相等 B.A组,B组平均数相等,B组方差大C.A组比B组的平均数、方差都大 D.A组,B组平均数相等,A组方差大7.如图所示的四边形,与选项中的四边形一定相似的是()A. B.C. D.8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折 B.7折C.8折 D.9折9.如图的中有一正方形,其中在上,在上,直线分别交于两点.若,则的长度为()A. B. C. D.10.四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC11.设,,且,则的值是()A. B. C. D.12.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.2620(1﹣x)2=3850 B.2620(1+x)=3850C.2620(1+2x)=3850 D.2620(1+x)2=3850二、填空题(每题4分,共24分)13.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.14.如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.15.已知直线与平行且经过点,则的表达式是__________.16.Rt△ABC中,∠C=90°,∠B=30°,则AC与AB两边的关系是_____.17.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.18.已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.三、解答题(共78分)19.(8分)某加工厂购进甲、乙两种原料,若甲原料的单价为元千克,乙原料的单价为元千克.现该工厂预计用不多于万元且不少于万元的资金购进这两种原料共千克.(l)若需购进甲原料千克,请求出的取值范围;(2)经加工后:甲原料加工的产品,利润率为;每一千克乙原料加工的产品售价为元.则应该怎样安排进货,才能使销售的利润最大?(3)在(2)的条件下,为了促销,公司决定每售出一千克乙原料加工的产品,返还顾客现金元,而甲原料加工的产品售价不变,要使所有进货方案获利相同,求的值20.(8分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.21.(8分)如图,在中,点是边上的一点,且,过点作于点,交于点,连接、.(1)若,求证:平分;(2)若点是边上的中点,求证:22.(10分)(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.23.(10分)解下列方程(1);(2);(3).24.(10分)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.25.(12分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?26.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.
参考答案一、选择题(每题4分,共48分)1、A【解析】
由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.【详解】解:∵AB=AC=10,AD平分∠BAC,
∴AD⊥BC,
∵E为AC的中点,,故选:A.【点睛】本题主要考查了等腰三角形的性质,直角三角形斜边上的中线的性质,熟练掌握直角三角形斜边上的中线的性质是解决问题的关键.2、A【解析】
根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=×AC×BD=AB×DH,∴×8×6=5×DH,∴DH=,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.3、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.4、A【解析】
根据题意利用勾股定理得出BC的长,进而得出答案.【详解】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴树高为:(1+)m.故选:A.【点睛】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.5、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.6、D【解析】
由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0,则分别计算出平均数及方差即可.【详解】解:由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0则A组的平均数为:,B组的平均数为:,A组的方差为:,B组的方差为:,∴,综上,A组、B组的平均数相等,A组的方差大于B组的方差故选D.【点睛】本题考查了平均数,方差的求法.平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量.7、D【解析】
根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选:D.【点睛】此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.8、B【解析】
设可打x折,则有1200×-800≥800×5%,解得x≥1.即最多打1折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.9、D【解析】
由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.【详解】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:,把代入②,得:,解得:,故选择:D.【点睛】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.10、C【解析】
由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.【详解】如图所示:需要添加的条件是AC⊥BD;理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD,
∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);
故选:C.【点睛】考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.11、C【解析】
将变形后可分解为:(−5)(+3)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a+=3+15b,∴(−5)(+3)=0,故可得:=5,a=25b,∴=.故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.12、D【解析】试题解析:如果设该贫困户每年纯收入的平均增长率为x,那么根据题意得:列出方程为:故选D.二、填空题(每题4分,共24分)13、1【解析】
过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【详解】解:如图,过点C作CF⊥AB于F,
∵AC,BC分别平分∠BAD,∠ABE,
∴CD=CF,CE=CF,
∵AC=AC,BC=BC,
∴△ADC≌△AFC,△CBE≌△CBF,
∴AF=AD=5,BF=BE=2,
∴AB=AF+BF=1.故答案是:1.【点睛】本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.14、.【解析】
已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.【详解】∵点O是对角线AC的中点,DE的中点为F,∴OF为△EDG的中位线,∴DG=2OF=4;∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠EAO=∠GCO,在△AOE和△COG中,,∴△AOE≌△COG,∴AE=CG,∵AB=CD,∴BE=DG=4,∵BE=3CG,∴AE=CG=.故答案为:.【点睛】本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.15、【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.【详解】∵直线y=kx+b与y=2x+1平行,∴k=2,把(1,3)代入y=2x+b得2+b=3,解得b=1,∴y=kx+b的表达式是y=2x+1.故答案为:y=2x+1.【点睛】此题考查一次函数中的直线位置关系,解题关键在于求k的值.16、AB=2AC.【解析】
解:如图所示,在Rt△ABC中,∠C=90°,∠B=30°,则AB=2AC.故答案为AB=2AC.【点睛】本题考查了在直角三角形中,30°所对的直角边等于斜边的一半,应熟练掌握.17、1【解析】试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=1.18、或【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.【详解】由题可得,可得,根据△ABC是等腰直角三角形可得:,解得,当k=1时,点C的坐标为,当k=-1时,点C的坐标为,故答案为或.【点睛】本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.三、解答题(共78分)19、(1);(2)购进甲原料7千克,乙原料13千克时,获得利润最大;(3);【解析】
(1)根据题意,由该工厂预计用不多于万元且不少于万元的资金购进这两种原料,列出不等式组,求出x的范围即可;(2)根据题意,可求出甲、乙每千克的利润,比较大小,在(1)的前提下,选出利润最大的进货方案即可;(3)根据题意,要使所有进货方案获利相同,列出方程,求出m的值即可.【详解】解:(1)需购进甲原料千克,则乙原料为(20-x)千克,则,解得:,∴x的取值范围为:;(2)根据题意,有甲原料每千克的利润为:乙原料每千克的利润为:元,由(1)知,,则进货方案有4种,分别为:①购进甲7千克,乙13千克;②购进甲8千克,乙12千克;③购进甲9千克,乙11千克;④购进甲10千克,乙10千克;∵,∴购进乙原料越多,利润越大,∴当购进甲原料7千克,乙原料13千克时,获得利润最大,最大利润为:元;(3)由(2)知,要使所有进货方案获利相同,则有解得:;∴当时,所有进货方案的获得利润相同;【点睛】本题考查了二元一次方程组的应用、以及解一元一次不等式组,解题的关键是:找准等量关系,正确列出不等式组和方程,并求解;20、(1)①C(4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.(1)①由题意,解得所以C(4,4);②把代入得,,所以A点坐标为(6,0),所以;(2)由题意,在OC上截取OM=OP,连结MQ∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为12,所以AM=12÷4=1,∴AQ+PQ存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.21、(1)见解析;(2)见解析.【解析】
(1)由四边形是平行四边形,,易证得,又由,可证得,即可证得平分;(2)延长,交的延长线于点,易证得,又由,可得是的斜边上的中线,继而证得结论.【详解】证明:(1)四边形是平行四边形,,,,,,,,在和中,,,,平分;(2)如图,延长,交的延长线于点,四边形是平行四边形,,,点是边上的中点,,在和中,,,,,,,.【点睛】此题考查了平行四边形的性质、等腰三角形的性质、直角三角形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.22、(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=1试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=12DE,PQ=MN=1考点:1.四边形综合题;2.综合题.23、(1);(2),;(3),.【解析】
(1)直接利用去分母进而解方程得出答案;
(2)直接利用提取公因式法分解因式解方程即可;
(3)直接利用配方法解方程得出答案.【详解】(1)经检验,是原方程的根.(2),或,(3),【点睛】此题主要考查了分式方程和一元二次方程的解法,正确掌握相关解题方法是解题关键.24、(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.【解析】
(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
(3)解直角三角形求出BC即可解决问题;【详解】(1)解:如图1﹣1中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,,∴△DAE≌△BDF,∴∠ADE=∠DBF,∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,∴∠BGD=180°﹣∠BGE=120°.(2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.∵∠MGB=60°,GM=GB,∴△GMB是等边三角形,∴∠MBG=∠DBC=60°,∴∠MBD=∠GBC,在△MBD和△GBC中,,∴△MBD≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南师范大学《大学信息技术基础》2023-2024学年第一学期期末试卷
- 保险业商务礼仪培训模板
- 办公室设计讲解模板
- 房地产经纪操作实务-《房地产经纪操作实务》点睛提分卷1
- 小10班圣诞晚会主持稿
- 新娘父亲发言稿
- 二零二五年石油供应合同数量和价格波动调整条款2篇
- 四川省南充市西充中学2024-2025学年高三上学期适应性考试生物试题(含答案)
- 二零二五年度股权并购重组与回购操作指南协议3篇
- 延边大学《电子科学与技术专业创新课程》2023-2024学年第一学期期末试卷
- 工程款支付报审表
- 《项目施工组织设计开题报告(含提纲)3000字》
- ICU常见药物课件
- CNAS实验室评审不符合项整改报告
- 农民工考勤表(模板)
- 承台混凝土施工技术交底
- 卧床患者更换床单-轴线翻身
- 计量基础知识培训教材201309
- 中考英语 短文填词、选词填空练习
- 阿特拉斯基本拧紧技术ppt课件
- 新课程理念下的班主任工作艺术
评论
0/150
提交评论