版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列计算正确的是()A. B. C. D.2.如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A. B.C. D.3.如图,已知平行四边形,,分别是,边上的点,,分别是,的中点,若点在边上从向移动,点不动,那么下列结论成立的是()A. B.线段的长度逐渐变小C.线段的长度保持不变 D.线段的长度逐渐变大4.如图,在中,平分,交于点,平分,交于点,,,则长为()A. B. C. D.5.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB=()A.70° B.60° C.50° D.40°6.直角三角形中,斜边,,则的长度为()A. B. C. D.7.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的()A.0 B.2.5 C.3 D.58.已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或 D.或9.一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.y1≥y210.下列运算正确的是()A.=﹣2 B.(2)2=6 C. D.11.若一个三角形的三边长为,则使得此三角形是直角三角形的的值是()A. B. C. D.或12.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a-c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12 B.14 C.16 D.20二、填空题(每题4分,共24分)13.如果关于x的方程没有实数根,则k的取值范围为______.14.设是满足不等式的正整数,且关于的二次方程的两根都是正整数,则正整数的个数为_______.15.如图,字母A所代表的正方形面积为____.16.2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.17.如图,在中,,,以点为圆心,以任意长为半径作弧,分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧,两弧在内交于点,连结并延长,交于点,则的长为____.18.如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.三、解答题(共78分)19.(8分)解决问题.学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?20.(8分)抛物线y=x2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0).(1)写出B点的坐标;(2)求抛物线的函数解析式;(3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.21.(8分)如图,菱形的对角线、相交于点,过点作且,连接、,连接交于点.(1)求证:;(2)若菱形的边长为2,.求的长.22.(10分)某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80元/件,售价为120元/件;乙种童衣的进价为100元/件,售价为150元/件.设购进甲种童衣的数量为(件),销售完这批童衣的总利润为(元).(1)请求出与之间的函数关系式(不用写出的取值范围);(2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?23.(10分)在矩形ABCD中,点E、F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.24.(10分)如图,四边形ABCD是正方形,点E是边BC上的一点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,当点E是BC的中点时,猜测AE与EF的关系,并说明理由.(2)如图2,当点E是边BC上任意一点时,(1)中所猜测的AE与EF的关系还成立吗?请说明理由.25.(12分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明.(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.图1图2图326.世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据二次根式的性质和计算法则分别计算可得正确选项。【详解】解:A、不是同类二次根式,不能合并,故本选项错误;B、不是同类二次根式,不能合并,故本选项错误;C、正确;D、,故故本选项错误。故选:C【点睛】本题考查了二次根式的性质和运算,掌握运算法则是关键。2、D【解析】
根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D【详解】解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
综上所述故选:D.【点睛】本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.3、C【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】如图,连接AR,
∵E、F分别是PA、PR的中点,
∴EF=AR,
∴EF的长不变,
故选:C.【点睛】考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、A【解析】
先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.【详解】∵四边形是平行四边形∴,,∥∵平分,平分∴,∴,∴∴∴故选A【点睛】本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.5、D【解析】
先根据平行四边形的性质得到∠C=70°,再根据DC=DB即可求∠CDB.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=70°,∵DC=DB,∴∠CDB=180°-2∠C=40°,故选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.6、A【解析】
根据题意,是直角三角形,利用勾股定理解答即可.【详解】解:根据勾股定理,在中,故选A【点睛】本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.7、C【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.8、A【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【详解】依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.【点睛】根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.9、A【解析】试题分析:k=﹣1<0,y将随x的增大而减小,根据﹣1<1即可得出答案.解:∵k=﹣1<0,y将随x的增大而减小,又∵﹣1<1,∴y1>y1.故选A.【点评】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b(k、b为常数,k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.10、D【解析】
根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.【详解】A:=2,故本选项错误;B:(2)2=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D.【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.11、D【解析】
根据勾股定理即可求解.【详解】当4为斜边时,x=当x为斜边是,x=故选D.【点睛】此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.12、C【解析】
有非负数的性质得到a=c,b=8,,PQ∥y轴,由于其扫过的图形是矩形可求得,代入即可求得结论.【详解】解:|a-c|+=0,∴a=c,b=8,,PQ∥y轴,∴PQ=8-2=6,将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和6的矩形,,∴a=4,∴c=4,∴a+b+c=4+8+4=16;故选:C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.二、填空题(每题4分,共24分)13、【解析】
根据判别式的意义得到△=(-3)2-4×(-2k)<0,然后解不等式即可.【详解】根据题意得△=(-3)2-4×(-2k)<0,解得.故答案为.【点睛】本题考查根的判别式和解不等式,解题的关键是掌握根的判别式和解不等式.14、1个.【解析】
首先把方程进行整理,根据方程有两个正整数根,说明根的判别式△=b2−4ac≥0,由此可以求出m的取值范围,表达出两根,然后根据方程有两个正整数根以及m的取值范围得出m为完全平方数即可.【详解】解:将方程整理得:x2−(2m+4)x+m2+4=0,∴,,∵两根都是正整数,且是满足不等式的正整数,∴m为完全平方数即可,∴m=1,4,9,16,25,36,49,共1个,故答案为:1.【点睛】此题主要考查了含字母系数的一元二次方程,确定m为完全平方数是解决本题的关键.15、1【解析】
根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2-PQ2=289-225=1,则正方形QMNR的面积为1.故答案为:1.【点睛】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.16、1【解析】
由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.【详解】∵图象过(4.5,0)
∴高铁列车和普快列车在C站相遇
∵AC=2BC,
∴V高铁=2V普快,
BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,
此时普快离开C站1×=120千米,
当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,
故答案为:1.【点睛】此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.17、1.【解析】
根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【详解】解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=1;故答案为:1.【点睛】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.18、50°【解析】
根据全等三角形对应角相等可得∠ACB=∠DCE,然后根据∠ACB+∠BCD=∠DCE+∠BCD得出答案.【详解】解:∵△ACB≌△DCE∴∠ACB=∠DCE∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠BCE=∠ACD=50°故答案为:50°.【点睛】本题考查全等三角形的性质,题目比较简单.三、解答题(共78分)19、(1)A,B两种型号足球的销售价格各是50元/个,90元/个.(2)见解析【解析】
试题分析:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;(2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得解得答:A,B两种型号足球的销售价格各是50元/个,90元/个.(2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得,解得7.5≤x≤12.5∵x是整数,∴x=8、9、10、11、12,有5种购球方案:购买A型号足球8个,B型号足球12个;购买A型号足球9个,B型号足球11个;购买A型号足球10个,B型号足球10个;购买A型号足球11个,B型号足球9个;购买A型号足球12个,B型号足球8个.20、(1)B(3,0);(2)y=x2−2x−3;(3)P(6,21)或(−6,45);(4).【解析】
(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0);(2)用两点式求解即可;(3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,即可求解;(4)易得直线BC的表达式,设出点M(x,x−3),则可得MD=x−3−(x2−2x−3)=−x2+3x,然后求二次函数的最值即可.【详解】解:(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0),故答案为(3,0);(2)函数的表达式为:y=(x+1)(x−3)=x2−2x−3;(3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,当x=6时,y=36−12−3=21,当x=−6时,y=36+12−3=45,故点P(6,21)或(−6,45);(4)∵B(3,0),C(0,-3),易得直线BC的表达式为:y=x−3,设点M(x,x−3),则点D(x,x2−2x−3),∴MD=x−3−(x2−2x−3)=−x2+3x,∵−1<0,∴MD有最大值,∴当x=时,其最大值为:.【点睛】本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式,图形的面积计算以及二次函数的最值问题等,难度不大,熟练掌握相关知识点即可解答.21、(1)证明见解析(1)【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;(1)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.
∴OE=CD.(1)在菱形ABCD中,∠ABC=60°,∴AC=AB=1.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.22、(1);(2)75件,4250元.【解析】
(1)总利润=甲种童衣每件的利润×甲种童衣的数量+乙种童衣每件的利润×乙种童衣的数量,根据等量关系列出函数解析式即可;(2)根据题意,先得出x的取值范围,再根据函数的增减性进行分析即可.【详解】解:(1)∵甲种童衣的数量为件,,是乙种童衣数量为件;依题意得:甲种童衣每件利润为:元;乙种童衣每件利润为:元∴,∴;(2),,∵中,,∴随的增大而减小,∵,∴时,答:购进甲种童衣为75件时,这批童衣销售完获利最多为4250元.【点睛】本题考查了一次函数的应用.23、AD=2.
【解析】试题分析:先设AD=x.由△DEF为等腰直角三角形,可以得到一对边相等,一对角相等,再加上一对直角相等,那么△ADE和△BEF全等,就有AD=BE.那么利用边相等可得x+x+2=1,解之即得AD.解:先设AD=x.∵△DEF为等腰三角形.∴DE=EF,∠FEB+∠DEA=90°.又∵∠AED+∠ADE=90°.∴∠FEB=∠EDA.又∵四边形ABCD是矩形,∴∠B=∠A=90°∴△ADE≌△BEF(AAS).∴AD=BE.∴AD+CD=AD+AB=x+x+2=1.解得x=2.即AD=2.考点:矩形的性质;全等三角形的判定与性质;等腰直角三角形.24、(1)AE=EF;(2)AE=EF成立,理由见解析.【解析】
(1)取AB的中点M,连接EM,根据同角的余角相等得到∠BAE=∠CEF,然后易证ΔMAE≅ΔCEF,问题得解;(2)在AB上取点P,使AP=CE,连接EP,同(1)的方法相同,证明ΔPAE≅ΔCEF即可;【详解】(1)证明:如图1,取AB的中点M,连接EM,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AM=EC,∴BM=BE,∴∠BME=45°,∠AME=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在ΔMAE和ΔCEF中,∠AME=∠ECFAM=CE∴ΔMAE≅ΔCEF,∴AE=EF;(2)如图2,在AB上取点P,使AP=CE,连接EP,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AP=EC,∴BP=BE,∴∠BPE=45°,∠APE=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在ΔPAE和ΔCEF中,∠PAE=∠CEFAP=EC∴ΔPAE≅ΔCEF,∴AE=EF;【点睛】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.25、(1)证明见解析;(2)证明见解析;(3)AE与MN的数量关系是:AE=MN,BF与FG的数量关系是:BF=FG【解析】(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度抗震救灾工程承包合伙合同样本2篇
- 二零二五年度生物科技反担保保证合同书3篇
- 二零二五年度核桃树种植基地水资源承包使用合同3篇
- 二零二五年度安置房买卖合同税务筹划指南
- 2025年版权回购合同示范文本3篇
- 冷链行业话务员工作总结
- 二零二五年度按揭中带产权转移登记手续指导的二手房买卖合同范本3篇
- 2024物业管理的业主自用房屋装饰装修施工合同3篇
- 二零二五年度瓷砖原材料检测及质量控制合同3篇
- 机票销售员工作总结
- 安徽省芜湖市2023-2024学年高一上学期期末考试 生物 含解析
- 通用电子嘉宾礼薄
- GB/T 3280-2015不锈钢冷轧钢板和钢带
- 四年级上册科学全册知识点(2022年新教科版)
- 施工机械施工方案
- 哈尔滨市城市规划管理技术规定
- 加拿大——文化ppt
- 100以内不进位不退位加减法200道
- 小学期末班级颁奖典礼动态课件PPT
- 开展创新型课题QC小组活动实施指导意见
- 皮具工艺生产流程(共6页)
评论
0/150
提交评论