版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.2.要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠13.若分式的值为0,则x的值等于A.0 B.3 C. D.4.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是()A.1 B.2 C.3 D.45.如图,直线l所表示的变量x,y之间的函数关系式为A. B. C. D.6.在下列性质中,平行四边形不一定具有的是()A.对边相等 B.对边平行 C.对角互补 D.内角和为360°7.关于x的分式方程有增根,则a的值为()A.2 B.3 C.4 D.58.如图,在中,分别是的中点,点在上,是的角平分线,若,则的度数是()A. B. C. D.9.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年的年人均收入(单位:元)情况如下表:年人均收入35003700380039004500村庄个数11331该乡去年各村庄年人均收入的中位数是()A.3700元 B.3800元 C.3850元 D.3900元10.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=40°,则∠BDC=()A.40° B.80° C.100° D.120°二、填空题(每小题3分,共24分)11.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是,众数是.12.如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.13.已知的对角线,相交于点,是等边三角形,且,则的长为__________.14.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______15.当x______时,在实数范围内有意义.16.如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.17.如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.18.如图,一根旗杆在离地面5m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆断裂之前的高为____.
三、解答题(共66分)19.(10分)如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了;变长或变短了多少米.20.(6分)如图,边长为7的正方形OABC放置在平面直角坐标系中,动点P从点C出发,以每秒1个单位的速度向O运动,点Q从点O同时出发,以每秒1个单位的速度向点A运动,到达端点即停止运动,运动时间为t秒,连PQ、BP、BQ.(1)写出B点的坐标;(2)填写下表:时间t(单位:秒)123456OP的长度OQ的长度PQ的长度四边形OPBQ的面积①根据你所填数据,请描述线段PQ的长度的变化规律?并猜测PQ长度的最小值.②根据你所填数据,请问四边形OPBQ的面积是否会发生变化?并证明你的论断;(3)设点M、N分别是BP、BQ的中点,写出点M,N的坐标,是否存在经过M,N两点的反比例函数?如果存在,求出t的值;如果不存在,说明理由.21.(6分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.(1)经过多少时间,△AMN的面积等于矩形ABCD面积的19(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.22.(8分)已知,是等边三角形,是直线上一点,以为顶点做.交过且平行于的直线于,求证:;当为的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取的中点,连结,然后证明.从而得到,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:(2)如图3、当D在BC的延长线上时,求证:(3)当在的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).23.(8分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了10400元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.(1)甲、乙两种款型的T恤衫各进货多少件?(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)24.(8分)正方形中,点是上一点,过点作交射线于点,连结.(1)已知点在线段上.①若,求度数;②求证:.(2)已知正方形边长为,且,请直接写出线段的长.25.(10分)解不等式组:,并把解集在数轴上表示出来.26.(10分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?
参考答案一、选择题(每小题3分,共30分)1、A【解析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.2、A【解析】
根据分式的性质,要使分式有意义,则分式的分母不等于0.【详解】根据题意可得要使分式有意义,则所以可得故选A.【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.3、C【解析】
直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.【详解】分式的值为0,,,解得:,故选C.【点睛】本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.4、C【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长=EF=FG=GH=HE=2AB,故⑤正确,没有条件可证明EG=BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.5、B【解析】
根据图象是直线可设一次函数关系式:,根据一次函数图象上已知两点代入函数关系式可得:,解得:,继而可求一次函数关系式.【详解】根据图象设一次函数关系式:,由图象经过(0,0)和(1,2)可得:,解得:,所以一次函数关系为:,故选B.【点睛】本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法.6、C【解析】A、平行四边形的对边相等,故本选项正确;B、平行四边形的对边平行,故本选项正确;C、平行四边形的对角相等不一定互补,故本选项错误;D、平行四边形的内角和为360°,故本选项正确;故选C7、D【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:去分母得:x+1=a,
由分式方程有增根,得到x-4=0,即x=4,
代入整式方程得:a=5,
故选:D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8、A【解析】
由分别是的中点,可得DE//BC,利用平行线性质及角平分线性质进行计算即可.【详解】解:∵分别是的中点∴DE//BC∴∠AED=∠C=80°∵是的角平分线∴∠AED=∠DEF=80°∵DE//BC∴∠DEF+∠EFB=180°∴=100°故答案为:A.【点睛】本题考查了三角形中位线的性质、平行线的性质和角平分线的性质,掌握中位线的性质是解题的关键.9、B【解析】
找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.【详解】根据图表可知题目中数据共有9个,
故中位数是按从小到大排列后第59个数的平均数作为中位数,
故这组数据的中位数是3800元.故选B.【点睛】主要运用了求中位数的方法,一些学生往往对这个图表分析的不准确,没有考虑到共有10个数据而不是5个而错解.10、B【解析】
根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=40°,∴∠BDC=∠DCA+∠A=80°,故选:B.【点睛】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、71【解析】
根据中位数和众数的定义解答.【详解】解:数据按从小到大排列:3,5,7,1,1,所以中位数是7;数据1出现2次,次数最多,所以众数是1.故填7;1.【点击】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12、【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.【详解】解:过P作PH⊥OY于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,∠EPH=30°,∴EH=EP=a,∴a+2b=2()=2(EH+EO)=2OH,∴当P在点B处时,OH的值最大,此时,OC=OA=1,AC==BC,CH=,∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.故答案为5.【点睛】本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.13、.【解析】
根据等边三角形的性质得出AD=OA=OD,利用平行四边形的性质和矩形的判定解答即可.【详解】解:∵△AOD是等边三角形,
∴AD=OA=OD=4,
∵四边形ABCD是平行四边形,
∴OA=AC,OD=BD,
∴AC=BD=8,
∴四边形ABCD是矩形,
在Rt△ABD中,,
故答案为:.【点睛】此题考查平行四边形的性质,关键是根据平行四边形的性质解答即可.14、k<0【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【详解】解:∵一次函数y=kx+3的图象不经过第三象限,∴经过第一、二、四象限,∴k<0.故答案为:k<0.【点睛】本题考查了一次函数图象与系数的关系.15、x≥-1且x≠1.【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
根据分式有意义的条件,x-1≠0,解得x≠1,
所以,x取值范围是x≥-1且x≠1故答案为:x≥-1且x≠1.【点睛】本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.16、【解析】首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.解:如图所示,过E作EM⊥AC,已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),故选B.“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.17、1.【解析】
根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.【详解】∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°.∵AB=AG,∠AGB=70°,∴∠BAG=180°﹣70°﹣70°=40°,∴∠DAG=90°﹣∠BAG=50°,∴∠AGD=(180°﹣∠DAG)=65°,∴∠BGD=∠AGB+∠AGD=1°.故答案为:1.【点睛】本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.18、18m【解析】旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故答案为18m.三、解答题(共66分)19、变短了1.5米.【解析】
如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.【详解】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=1.5米.【点睛】本题考查相似三角形的应用,掌握相似三角形的判定和性质正确推理计算是解题关键.20、(1)B(7,7);(2)表格填写见解析;①,PQ长度的最小值是;②四边形OPBQ的面积不会发生变化;(3)t=3.5存在经过M,N两点的反比例函数.【解析】
通过写点的坐标,填表,搞清楚本题的基本数量关系,每个量的变化规律,然后进行猜想;用运动时间t,表示线段OP,OQ,CP,AQ的长度,运用割补法求四边形OPBQ的面积,由中位线定理得点M(3.5,7-),N(,3.5),反比例函数图象上点的坐标特点是,利用该等式求t值.【详解】解:(1)∵在正方形OABC中OA=OC=7∴B(7,7)(2)表格填写如下:①线段PQ的长度的变化规律是先减小再增大,PQ长度的最小值是.理由如下:在Rt△POQ中,OP=7-t,OQ=t∴PQ2=(7-t)2+t2=2t2-14t+49=∵∴∴当时PQ2最取得最小值为∴此时②根据所填数据,四边形OPBQ的面积不会发生变化;∵=24.5,∴四边形OPBQ的面积不会发生变化.(3)点M(3.5,7−),N(,3.5),当3.5(7−)=×3.5时,则t=3.5,∴当t=3.5存在经过M,N两点的反比例函数.【点睛】本题考查了正方形的性质,坐标与图形性质,反比例函数图象上点的坐标特征,掌握正方形的性质,坐标与图形性质,反比例函数图象上点的坐标特征是解题的关键.21、(1)1秒或2秒,(2)存在,32秒或12【解析】试题分析:(1)设经过x秒后,根据△AMN的面积等于矩形ABCD面积的19,得出方程解方程即可;(2)假设经过t秒时,以A,M试题解析:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的19则有:12(6-2x)x=1解方程,得x1经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,(2)假设经过t秒时,以A,M,由矩形ABCD,可得∠CDA=∠MAN=90因此有AMAN=即t6-2t=3解①,得t=32经检验,t=32或t=125都符合题意,所以动点M,N同时出发后,经过32考点:1.矩形的性质2.相似三角形的判定与性质.22、(1)见解析;(2)见解析;(4)见解析,,仍成立【解析】
(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.【详解】(1)证明:在AB上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB∥CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB∥CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB∥CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.23、(1)甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;(2)7520元.【解析】
(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;
(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,
依题意得:,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
2x=1.
答:甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;
(2)甲进货价:10400÷1=130(元/件),乙进货价:6400÷40=160(元/件),
130×(1+60%)×1+160×(1+60%)×(40÷2)+160×(1+60%)×0.5×(40÷2)-10400-6400
=7520(元)
答:售完这批T恤衫商店共获利7520元.【点睛】本题考查列分式方程解实际问题,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24、(1)①;②见解析;(2)的长为或【解析】
(1)①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.(2)分情况讨论:①当点F在线段BC上时;②当点F在线段CB延长线上时;根据正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度产品购买预先合同样本版
- 2024年二手房买卖合同范本:物业管理与社区配套服务3篇
- 2024年履约及反担保之综合担保合同3篇
- 2024年度美容产品展会服务合同3篇
- 18963号定制锅炉安装工程合同版
- 2024年专项土方运输合作合同
- 2024年高效照明电器产品合作协议书
- 2024年家居装饰设计与施工一体化协议
- 2024版锚具质量保障与售后服务合同3篇
- 2024年度酒店空调系统改造与运营管理合同3篇
- 女性酒类行业分析
- 五育并举方案
- 危重孕产妇和新生儿救治中心
- 电网安全生产风险管理体系介绍课件
- 肥料制造中的信息化与数字化转型
- 写作-写景如在眼前 课件 2024年高教版(2023)中职语文基础模块上册
- 临床医学的学术发展与学科建设
- 大动脉炎护理课件
- 智齿冠周炎课程
- 《中国甲状腺疾病诊治指南》(一)-甲状腺功能亢进症
- 创新能力与企业竞争力关系
评论
0/150
提交评论