2023年河南省郑州市名校数学八下期末质量检测试题含解析_第1页
2023年河南省郑州市名校数学八下期末质量检测试题含解析_第2页
2023年河南省郑州市名校数学八下期末质量检测试题含解析_第3页
2023年河南省郑州市名校数学八下期末质量检测试题含解析_第4页
2023年河南省郑州市名校数学八下期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.不等式组中的两个不等式的解集在数轴上表示为()A. B.C. D.2.在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是()A.(3,﹣1) B.(-1,3) C.(-3,1) D.(-2,﹣3)3.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.164.中,,则的度数是()A. B. C. D.5.某机械厂七月份生产零件50万个,计划八、九月份共生产零件万个,设八、九月份平均每月的增长率为x,那么x满足的方程是A. B.C. D.6.使有意义的x的取值范围是(▲)A.x>-1 B.x≥-1 C.x≠-1 D.x≤-17.已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<08.在分式中,的取值范围是()A. B. C. D.9.方程的二次项系数、一次项系数、常数项分别为()A.,, B.,, C.,, D.,,10.如图,菱形ABCD的对角线AC、BD的长分别是3cm、4cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.2cm二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.12.如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.13.若关于x的分式方程=2a无解,则a的值为_____.14.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.15.如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.16.某商品经过连续两次降价,售价由原来的25元/件降到16元/件,则平均每次降价的百分率为_____.17.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.18.已知直线与直线平行且经过点,则______.三、解答题(共66分)19.(10分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.(1)求证,;(2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.20.(6分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.21.(6分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.22.(8分)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号

A型

B型

C型

进价(单位:元/部)

900

1200

1100

预售价(单位:元/部)

1200

1600

1300

(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.23.(8分)解方程:x-1x-2-424.(8分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.25.(10分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为;②点B的坐标为(直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点C(-1,0),点A(0,4),试求直线AB的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B(4;3),过点B作BAy轴,垂足为点A;作BCx轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.26.(10分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.(1)点C的坐标为,点D的坐标为;(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】不等式组,解得:,解得:,∴不等式组的解集为:,故选:C.【点睛】本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.2、B【解析】

根据点到坐标轴的距离分别求出该点横、纵坐标的绝对值,再根据点在第二象限得出横、纵坐标的具体值即可.【详解】解:由点M到x轴的距离是3,到y轴的距离是1,得

|y|=3,|x|=1,由点M在第二象限,得x=-1,y=3,

则点M的坐标是(-1,3),

故选:B.【点睛】本题考查点到坐标轴的距离和平面直角坐标系中各象限内点的坐标特征.熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.3、C【解析】试题解析:4、B【解析】

由平行四边形ABCD中,若∠A+∠C=130°,可求得∠A的度数,继而求得∠D的度数.【详解】如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=130°,∴∠A=65°,∵四边形ABCD是平行四边形,∴AB//DC∴∠A+∠D=180°∴∠D=180°-∠A=115°.故选:B.【点睛】此题考查了平行四边形的性质.此题比较简单,注意熟记定理是解此题的关键.5、C【解析】

主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【详解】依题意得八、九月份的产量为10(1+x)、10(1+x)2,∴10(1+x)+10(1+x)2=111.1.故选C.【点睛】本题考查了由实际问题抽象出一元二次方程.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.6、B【解析】分析:让被开方数为非负数列式求值即可.解答:解:由题意得:x+1≥0,解得x≥-1.故选B.7、D【解析】试题分析:在不等式的左右两边同时加上或减去同一个数,则不等式仍然成立;在不等式的左右两边同时乘以或除以一个正数,则不等式仍然成立;在不等式的左右两边同时乘以或除以一个负数,则不等符号需要改变.考点:不等式的性质8、A【解析】

根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x-1≠0,解得x≠1.故选A.【点睛】本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9、D【解析】

首先把方程化为一般式,然后可得二次项系数、一次项系数、常数项.【详解】2x2-6x=9可变形为2x2-6x-9=0,

二次项系数为2、一次项系数为-6、常数项为-9,

故选:D.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;b叫做一次项系数;c叫做常数项.10、B【解析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】解:∵四边形ABCD是菱形,∴CO=AC=cm,BO=BD=2cm,AO⊥BO,∴BC=cm,∴S菱形ABCD=×3×4=6cm2,∵S菱形ABCD=BC×AE,∴BC×AE=6,∴AE=cm.故选:B.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.二、填空题(每小题3分,共24分)11、1:1【解析】

如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.【详解】解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.∵DE=AE,DF=FC,∴EF∥AC,EF:AC=1:2,∴S△DEF=S△DAC=×1S=S,同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,∴四边形EFQP是平行四边形,∴S平行四边形EFQP=1S,∴S△TPQ=S平行四边形EFQP=2S,∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,故答案为1:1.【点睛】本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.12、【解析】

首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.【详解】解:连接EC.∵四边形ABCD是矩形∴AO=CO,且OE⊥AC,∴OE垂直平分AC∴CE=AE,S△AOE=S△COE=2,∴S△AEC=2S△AOE=1.∴AE•BC=1,又∵BC=4,∴AE=2,∴EC=2.∴BE=故答案为:【点睛】本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.13、1或【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为1或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.14、1【解析】

由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.【详解】解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;

乙车的平均速度为:300÷(9-6)=100(km/h),

当乙车7:30时,乙车离A的距离为:100×1.5=150(km),

∴点A(7.5,150),

由图可知点B(5,0),

设甲的函数解析式为:y=kt+b,

把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=1t-300,

当t=9时,y=1×9-300=240,

∴9点时,甲距离开A的距离为240km,

∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.

故答案为:1.

【点睛】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.15、1.【解析】

过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.【详解】如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.则四边形ACFD是平行四边形,∴AD=CF,∴AD+BC=BF,∵梯形ABCD的中位线长是1,∴BF=AD+BC=1×2=10.∵AC=BD,AC⊥BD,∴△BDF是等腰直角三角形,∴AH=DE=BF=1,故答案为:1.【点睛】本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.16、20%【解析】

设平均每次降价的百分率为x,根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:设平均每次降价的百分率为x,依题意,得:25(1﹣x)2=16,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).故答案为:20%.【点睛】本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.17、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【点睛】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、1【解析】

根据平行直线的解析式的k值相等可得k=-1,再将经过的点的坐标代入求解即可.【详解】解:∵直线与直线平行,∴k=-1.∴直线的解析式为.∵直线经过点(1,1),∴b=4.∴k+b=1.【点睛】本题考查了两直线平行问题,主要利用了两平行直线的解析式的k值相等,需熟记.三、解答题(共66分)19、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.【解析】

(1)根据AAS或ASA即可证明;

(2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标.【详解】(1)∵,∴,,∴,∵,∴(2)∵直线AB与x轴,y轴交于、两点∴直线AB的解析式为∵,∴,设,则把代入得到,∴∵,∴直线BC的解析式为,设直线的解析式为,把代入得到∴直线的解析式为,∴,∴∴平移的距离是个单位.(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,

易知直线PC的解析式为y=-x+,

∴P(0,),

∵点C向左平移1个单位,向上平移个单位得到P,

∴点D向左平移1个单位,向上平移个单位得到Q,

∴Q(2,),

当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″,

当四边形CDP′Q′为平行四边形时,可得Q′,

综上所述,存在满足条件的点Q,其坐标为或或【点睛】本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.20、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.【解析】

根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,根据面积长宽,列出关于x的一元二次方程,解之即可,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.【详解】根据题意得:长,宽,根据题意得:整理得:解得:舍去,,纸盒的高为5cm,设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,,,解得:,根据题意得:,,y随着x的增大而减小,当取到最大值时,y取到最小值,即当时,,x的取值范围为:,y的最小值为1.【点睛】本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.21、(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;【解析】

(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理得出GC的长,即可得出AB的长;(3)先求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证.【详解】(1)AG=CE.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE;(2)过点G作GM⊥AC于点M,∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,∴BG=MG,∵BE=1,∴MG=BG=1,∵AC平分∠DCB,∴∠BCM=45°,∴MC=MG=1,∴GC=,∴AB的长为:AB=BC=+1;(3)AG=CE仍然成立.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,∵∠ABG=∠ABC−∠CBG,∠CBE=∠EBG−∠CBG,∴∠ABG=∠CBE,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE.【点睛】此题考查几何变换综合题,解题关键在于证明△ABG和△CBE全等.22、(1)60-x-y(2)y=2x-1(3)①P=10x+10②最大值为1710元.此时购进A型手机3部,B型手机18部,C型手机8部【解析】

(1)手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,设购进A型手机x部,B型手机y部,那么购进C型手机的部数=60-x-y;(2)由题意,得900x+1200y+1100(60-x-y)=61000,整理得y=2x-1.(3)①由题意,得P=1200x+1600y+1300(60-x-y)-61000-110,整理得P=10x+10.②购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得解得29≤x≤3.∴x范围为29≤x≤3,且x为整数.∵P是x的一次函数,k=10>0,∴P随x的增大而增大.∴当x取最大值3时,P有最大值,最大值为1710元.此时购进A型手机3部,B型手机18部,C型手机8部.点评:本题考查函数及其最值、不等式;解答本题的关键是掌握函数的概念和性质,会写函数的关系式,会求函数的最值,要求考生会求解不等式组的23、x=-1【解析】

方程两边同时乘以最简公分母x2-4,把分式方程转化为整式方程求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论