版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若关于x的方程的解为正数,则m的取值范围是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠82.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A. B. C. D.3.已知四边形ABCD,有以下四个条件:①AB∥CD;②BC∥AD;③ABCD;④ABCADC.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法有()A.3种 B.4种 C.5种 D.6种4.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是(
)A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形5.若x<y,则下列式子不成立的是()A.x-1<y-1 B. C.x+3<y+3 D.-2x<-2y6.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.A.2个B.3个C.4个D.5个7.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米8.正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.每条对角线平分一组对角C.对边相等D.对角线相等9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中14时至24时之间的气温在逐渐降低10.如图,在ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是()A.∠A=60˚ B.DE=DF C.EF⊥BD D.BD是∠EDF的平分线二、填空题(每小题3分,共24分)11.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.12.已知,化简二次根式的正确结果是_______________.13.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.14.如图,在△ABC中,AB=AC,BC=6,点F是BC的中点,点D是AB的中点,连接AF和DF,若△DBF的周长是11,则AB=_____.15.已知直线与直线平行且经过点,则______.16.如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.17.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.18.若关于的方程的解为正数,则的取值范围是__________.三、解答题(共66分)19.(10分)已知:y=y1﹣y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时y=1.(1)求y关于x的函数关系式.(2)求x=﹣时,y的值.20.(6分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.21.(6分)如图,正方形ABCD中,点E是边BC上一点,EF⊥AC于点F,点P是AE的中点.(1)求证:BP⊥FP;(2)连接DF,求证:AE=DF.22.(8分)如图,点C,D在线段AB上,△PCD是等边三角形,△ACP∽△PDB,(1)请你说明CD2=AC•BD;(2)求∠APB的度数.23.(8分)如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM≌△DCM;(2)四边形ABCD是矩形.24.(8分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.已知C(-2,2),D(1,2),E(1,0),F(-2,0).(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是;(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.25.(10分)计算:(2﹣1)2+(+4)(-4).26.(10分)如图所示,的顶点在的网格中的格点上,画出绕点A逆时针旋转得到的;画出绕点A顺时针旋转得到的
参考答案一、选择题(每小题3分,共30分)1、C【解析】
原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解为正数,∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故选C.【点睛】本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.2、D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.3、B【解析】
从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④,然后按照平行四边形的判定方法逐一判断即可.【详解】解:从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④;具备①②时,四边形ABCD满足两组对边分别平行,是平行四边形;具备①③时,四边形ABCD满足一组对边平行且相等,是平行四边形;具备①④时,如图,∵AB∥CD,∴ABC+C=180°.∵ABCADC,∴ADC+C=180°.∴AD∥CB.所以四边形ABCD是平行四边形;具备②③时,等腰梯形就符合一组对边平行,另一组对边相等,但它不是平行四边形,故具备②③时,不能判断是否是平行四边形;具备②④时,类似于上述①④,可以证明四边形ABCD是平行四边形;具备③④时,如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E;在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC.把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合.显然四边形ABC'D'满足:AB=CD=C'D';∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形.综上,从四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有4种.故选B.【点睛】此题主要考查了平行四边形的判定方法,平行四边形的判定方法主要有:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.在具体应用时,要注意灵活选用.4、B【解析】
直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【详解】解:A、∵∠C+∠B+∠A=180°(三角形内角和定理),∠C﹣∠B=∠A,∴∠C+∠B+(∠C﹣∠B)=180°,∴2∠C=180°,∴∠C=90°,故该选项正确,
B、如果c2=b2﹣a2,则△ABC是直角三角形,且∠B=90°,故该选项错误,
C、化简后有c2=a2+b2,则△ABC是直角三角形,故该选项正确,
D、设三角分别为5x,3x,2x,根据三角形内角和定理可得,5x+3x+2x=180°,则x=18°,所以这三个角分别为:90度,36度,54度,则△ABC是直角三角形,故该选项正确.
故选B.【点睛】考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法.5、D【解析】
根据不等式的性质逐项分析即可.【详解】A.∵x<y,∴x-1<y-1,故成立;B.∵x<y,∴,故成立;C.∵x<y,∴x+3<y+3,故成立;D.∵x<y,∴-2x>-2y,故不成立;故选D.故选:D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6、C【解析】
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的概念求解即可.【详解】解:(1)正方形是中心对称图形;
(2)等边三角形不是中心对称图形;
(3)长方形是中心对称图形;
(4)角不是中心对称图形;
(5)平行四边形是中心对称图形;
(6)圆是中心对称图形.
所以一共有4个图形是中心对称图形.
故选:C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】
试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.8、D【解析】
列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D.【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.9、A【解析】
根据函数图象的纵坐标,可得气温,根据函数图象的增减性,可得答案.【详解】A、由纵坐标看出,这一天中最高气温是24℃,错误,故A符合选项;B、由纵坐标看出最高气温是24℃,最低气温是8℃,温差是24﹣8=16℃,正确,故B不符合选项;C、由函数图象看出,这一天中2时至14时之间的气温在逐渐升高,故C正确;D、由函数图象看出,这一天中0时至2时,14时至24时气温在逐渐降低,故D错误;故选:A.【点睛】考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.10、A【解析】
先证明四边形BFDE是平行四边形,再根据菱形的判定定理逐项进行分析判断即可.【详解】由题意知:四边形ABCD是平行四边形,∴∠ADC=∠ABC,∠A=∠C,AD=BC,AB=CD,ABCD又∵DE,BF分别是∠ADC和∠ABC的平分线,∴∠ADE=∠FBC,在△ADE和△CBF中∴△ADE≌△CBF(ASA)∴AE=CF,DE=BF又∵AB=CD,ABCD,AE=CF∴DF=BE,DFBE、∴四边形BFDE是平行四边形.A、∵AB//CD,∴∠AED=∠EDC,又∵∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE,又∵∠A=60°,∴△ADE是等边三角形,∴AD=AE=DE,无法判断平行四边形BFDE是菱形.B、∵DE=DF,∴平行四边形BFDE是菱形.C、∵EF⊥BD,∴平行四边形BFDE是菱形.D、∵BD是∠EDF的平分线,∴∠EDB=∠FDB,又∵DF//BE,∴∠FDB=∠EBD,∴∠EDB=∠EBD,∴ED=DB,∴平行四边形BFDE是菱形.故选A.【点睛】本题考查了平行四边形的性质,菱形的判定,正确掌握菱形的判定定理是解题的关键.二、填空题(每小题3分,共24分)11、AB=AD.【解析】
由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.【详解】添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD.【点睛】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.12、【解析】
由题意:-a3b≥0,即ab≤0,∵a<b,∴a≤0<b;所以原式=|a|=-a.13、1【解析】
根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12BD∴OD=12BD=4∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=1故答案为:1.【点睛】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.14、1【解析】
根据直角三角形斜边上的中线等于斜边的一半可得DE=DF=AB,EF=BC,然后代入数据计算即可得解.【详解】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=11,∴AB=1,故答案为1.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.15、1【解析】
根据平行直线的解析式的k值相等可得k=-1,再将经过的点的坐标代入求解即可.【详解】解:∵直线与直线平行,∴k=-1.∴直线的解析式为.∵直线经过点(1,1),∴b=4.∴k+b=1.【点睛】本题考查了两直线平行问题,主要利用了两平行直线的解析式的k值相等,需熟记.16、【解析】
设DP=x,根据,列出方程即可解决问题.【详解】解:设DP=x∵,AD=BC=6,AB=CD=8,又∵点为中点∴BQ=CQ=3,∴18=48−⋅x⋅6−(8−x)⋅3−⋅8⋅3,∴x=4,∴DP=4故答案为4cm【点睛】本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.17、1【解析】
首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【详解】解:∵正五边形的外角为10°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=1°,∵AF∥CD,∴∠DFA=∠CDB=1°,故答案为1.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.18、且【解析】
首先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x-1≠0即可求得m的范围.【详解】解:去分母,得1x+m=3(x-1),
去括号,得1x+m=3x-3,
解得:x=m+3,
根据题意得:m+3-1≠0且m+3>0,
解得:m>-3且m≠-1.
故答案是:m>-3且m≠-1.【点睛】本题考查了分式方程的解,注意:忽视x-1≠0是本题的易错点.三、解答题(共66分)19、(1)y=2x2+;(2)y=﹣.【解析】
(1)设y1=k1x2,y2=,根据y=y1﹣y2,列出y与k1,k2和x之间的函数关系,再将x,y的已知量代入,便能求出k1,k2的值,进而得到y关于x的函数关系式.
(2)把x=-代入y关于x的函数关系式即可.【详解】解:(1)设y1=k1x2,y2=,∵y=y1﹣y2,∴y=k1x2﹣,把x=1,y=3代入y=k1x2﹣得:k1﹣k2=3①,把x=﹣1,y=1代入y=k1x2﹣得:k1+k2=1②,①,②联立,解得:k1=2,k2=﹣1,即y关于x的函数关系式为y=2x2+,(2)把x=﹣代入y=2x2+,解得y=﹣.【点睛】本道题主要考查了学生对待定系数法求正比例函数解析式、反比例函数解析式的熟练掌握情况,能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.20、57+12﹣【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)=(12+12+45)﹣(6﹣2+2﹣5)=(57+12﹣)(cm2).考点:二次根式的应用21、(1)证明见解析;(2)证明见解析.【解析】
(1)先根据正方形的性质可得,再根据直角三角形的性质可得,然后根据等腰三角形的性质可得,,最后根据三角形外角性质、角的和差即可得证;(2)如图(见解析),先结合(1)的结论、根据等腰直角三角形的性质可得,从而可得,再根据三角形全等的判定定理与性质可得,然后根据等量代换即可得证.【详解】(1)四边形ABCD是正方形点P是AE的中点,是斜边上的中线,FP是斜边上的中线即;(2)如图,连接BF是等腰直角三角形四边形ABCD是正方形在和中,.【点睛】本题考查了正方形的性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.22、(1)见解析;(2)∠APB=120°.【解析】
(1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;
(2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.【详解】(1)证明:∵△ACP∽△PDB,∴AC:PD=PC:BD,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=CD=PD,∴CD2=AC•BD;(2)解:∵△ACP∽△PDB,∴∠A=∠BPD,∵△PCD是等边三角形,∴∠PCD=∠CPD=60°,∴∠PCD=∠A+∠APC=60°,∴∠APC+∠BPD=60°,∴∠APB=∠APC+∠CPD+∠BPD=120°.【点睛】此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.23、(1)详见解析;(2)详见解析;【解析】
(1)由四边形ABCD是平行四边形,得出AB=CD,又由M为AD的中点,得出AM=MD,又AB=CD,AM=MD,BM=CM,故△ABM≌△DCM(SSS);(2)根据(1)中△ABM≌△DCM,得出∠BAD=∠CDA,又四边形ABCD是平行四边形,∠BAD+∠CDA=180°,得出∠BAD=∠CDA=90°,故可判定四边形ABCD是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AB=CD∵M为AD的中点∴AM=MD∵AB=CD,AM=MD,BM=CM∴△ABM≌△DCM(SSS)(2)∵△ABM≌△DCM∴∠BAD=∠CDA又∵四边形ABCD是平行四边形∵∠BAD+∠CDA=180°∴∠BAD=∠CDA=90°∴四边形ABCD是矩形.【点睛】此题主要考查全等三角形和矩形的判定,熟练掌握其判定条件,即可解题.24、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或1≤b≤1.【解析】
(1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;
(1)画出图形,观察图形可得出结论;(3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流仓库经理年度述职报告
- 智慧教室装修方案
- 从业人员安全生产教育培训
- 孕期糖尿病饮食和护理
- 老年人糖尿病病人的护理
- 龋齿病的发展过程图解
- 2.3.1物质的量的单位-摩尔 课件高一上学期化学人教版(2019)必修第一册
- 吉林省2024七年级数学上册第1章有理数1.10有理数的除法课件新版华东师大版
- 吉林省2024七年级数学上册第1章有理数全章整合与提升课件新版华东师大版
- 深度学习及自动驾驶应用 课件 第9、10章 生成对抗网络及自动驾驶应用、强化学习理论及自动驾驶应用实践
- 养老机构心理危机应急救援预案
- 《老年人生活照护》试卷A卷及答案
- 2024年上海公务员考试申论试题(A卷)
- 工厂蒸汽管道铺设工程合同
- 电子信息产业园建设项目可行性研究报告
- 消防安全知识培训课件
- 高中历史选择性必修2知识点总结归纳
- 16J914-1 公用建筑卫生间
- 物联网应用技术职业生涯规划
- 2024年广东恒健投资控股有限公司招聘笔试参考题库含答案解析
- 标识导示系统合同
评论
0/150
提交评论