2023年江苏省昆山市、太仓市数学八年级第二学期期末联考模拟试题含解析_第1页
2023年江苏省昆山市、太仓市数学八年级第二学期期末联考模拟试题含解析_第2页
2023年江苏省昆山市、太仓市数学八年级第二学期期末联考模拟试题含解析_第3页
2023年江苏省昆山市、太仓市数学八年级第二学期期末联考模拟试题含解析_第4页
2023年江苏省昆山市、太仓市数学八年级第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.162.在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有()A.2个B.3个C.4个D.5个3.在平面直角坐标系中,将直线l1:y=-3x-2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=-3x-9 B.y=-3x-2C.y=-3x+2 D.y=-3x+94.“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>05.二元一次方程组的解中x、y的值相等,则k=()A.1 B.2 C.-1 D.-26.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确 B.仅乙正确 C.甲、乙均正确 D.甲、乙均错误7.若一个三角形的三边长为,则使得此三角形是直角三角形的的值是()A. B. C. D.或8.要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位9.已知,则下列不等式成立的是()A. B. C. D.10.如果把分式中的和都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍C.缩小6倍 D.不变二、填空题(每小题3分,共24分)11.如图,在等腰梯形ABCD中,AD∥BC,AB=CD.点P为底边BC的延长线上任意一点,PE⊥AB于E,PF⊥DC于F,BM⊥DC于M.请你探究线段PE、PF、BM之间的数量关系:______.12.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.13.如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.14.如图,在平行四边形中,对角线相交于点,且.已知,则____.15.已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.16.一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________17.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH丄AE于点H,连接BH并延长交CD于点F,连接DE交BF①∠AED=∠CED;②OE=OD;③BH=HF;④BC-CF=2HE;⑤AB=HF,其中正确的有__________(只填序号).18.若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.三、解答题(共66分)19.(10分)先化简,再求值:(x+2-)•,其中x=3+.20.(6分)已知点P(1,m)、Q(n,1)在反比例函数y=的图象上,直线y=kx+b经过点P、Q,且与x轴、y轴的交点分别为A、B两点.(1)求k、b的值;(2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.21.(6分)(1)化简:.(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.22.(8分)如图,在中,;线段是由线段绕点按逆时针方向旋转得到,是由沿方向平移得到,且直线过点.(1)求的大小.(2)求的长.23.(8分)毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.24.(8分)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.25.(10分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.26.(10分)如图1,在正方形中,,为对角线上的一点,连接和.(1)求证:;(2)如图2,延长交于点,为上一点,连接交于点,且有.①判断与的位置关系,并说明理由;②如图3,取中点,连接、,当四边形为平行四边形时,求的长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:在Rt△ABC中,∵∠ABC=30°,∴AC=12∵△ABC沿CB向右平移得到△DEF,∴AD=BE,AD∥BE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于8,∴AC•BE=8,即4BE=8,∴BE=1,即平移距离等于1.故选A.考点:平移的性质.2、A【解析】第2个、第5个是中心对称图形,不是轴对称图形,共2个故选B.3、B【解析】

根据一次函数图象的平移规律“左加右减,上加下减”即可解答.【详解】直线y=-3x-1的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=-3(x+1)-1+3=-3x-1,即y=-3x-1.故选B.【点睛】本题考查了一次函数图象的平移规律,熟练运用一次函数图象的平移规律“左加右减,上加下减”是解决问题的关键.4、D【解析】

正数即“>0”可得答案.【详解】“a是正数”用不等式表示为a>0,故选D.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.5、B【解析】

由x与y的值相等得到y=x,代入方程组中计算即可求出k的值.【详解】解:由题意得:y=x,把y=x代入方程组,得,解得:,故选择:B.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.6、C【解析】试题解析:根据甲的作法作出图形,如下图所示.∵四边形ABCD是平行四边形,∴AD∥BC,∵EF是AC的垂直平分线,在和中,∴≌,又∵AE∥CF,∴四边形AECF是平行四边形.∴四边形AECF是菱形.故甲的作法正确.根据乙的作法作出图形,如下图所示.∵AD∥BC,∴∠1=∠2,∠6=∠7.∵BF平分,AE平分∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∵AF∥BE,且∴四边形ABEF是平行四边形.∵∴平行四边形ABEF是菱形.故乙的作法正确.故选C.点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边相等的平行四边形是菱形.7、D【解析】

根据勾股定理即可求解.【详解】当4为斜边时,x=当x为斜边是,x=故选D.【点睛】此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.8、C【解析】

平移后相当于x不变y增加了5个单位,由此可得出答案.【详解】解:由题意得x值不变y增加5个单位

应沿y轴向上平移5个单位.

故选C.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.9、C【解析】

根据不等式的性质逐个判断即可.【详解】解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x−6>y−6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴−3x<−3y,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.10、D【解析】

将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得=,故值不变,答案选D.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.二、填空题(每小题3分,共24分)11、PE-PF=BM.【解析】

过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.【详解】解:PE-PF=BM.理由如下:过点B作BH∥CD,交PF的延长线于点H,如图∴∠PBH=∠DCB,∵PF⊥CD,BM⊥CD,∴BM∥FH,PH⊥BH,∴四边形BMFH是平行四边形,∠H=90°,∴FH=BM,∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,∴∠ABC=∠PBH,∵PE⊥AB,∴∠PEB=∠H=90°,又PB为公共边,∴△PBE≌△PBH(AAS),∴PH=PE,∴PE=PF+FH=PF+BM.即PE-PF=BM.【点睛】本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.12、14cm或16cm【解析】试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为14cm或16cm.考点:平行四边形的性质.13、60°【解析】分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.详解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=AC,∴∠B=∠ACB=2∠E=60°,故答案为:60°点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14、【解析】

直接构造直角三角形,再利用平行四边形的性质结合勾股定理得出AC的长,利用平行四边形的性质求得AO的长即可.【详解】解:延长CB,过点A作AE⊥CB交于点E,∵四边形ABCD是平行四边形,∴AB=DC=5,BC=AD=3,DC∥AB,∵AD⊥CB,AB=5,BC=3,∴BD=4,∵DC∥AB,∠ADB=90°,∴∠DAB=90°,可得:∠ADB=∠DAE=∠ABE=90°,则四边形ADBE是矩形,故DB=EA=4,∴CE=6,∴AC=,∴AO=.故答案为:.【点睛】此题主要考查了勾股定理以及平行四边形的性质,正确作出辅助线是解题关键.15、,,【解析】

根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.【详解】解:①当如图1时,

∵C(0,2),A(1,0),B(4,0),

∴AB=3,

∵四边形ABMC是平行四边形,

∴M(3,2);

②当如图2所示时,同①可知,M(-3,2);

③当如图3所示时,过点M作MD⊥x轴,

∵四边形ACBM是平行四边形,

∴BD=OA=1,MD=OC=2,

∴OD=4+1=5,

∴M(5,-2);

综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).【点睛】本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.16、【解析】

由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.【详解】解:由图知,抛物线的顶点坐标为(4,3),故设抛物线解析式为,将点(0,)代入,得:,解得,则抛物线解析式为,故答案为:.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.17、①②③④【解析】

①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=2AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【详解】∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=2AB,∵AD=2AB,∴AE=AD,在△ABE和△AHD中,∵∠BAE=∠DAE,∠ABE=∠AHD=90°,AE=AD,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°-45°)=67.5°∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=12(180°-45°)=67.5°,∠OHE=∠AHB∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,∵∠EBH=∠OHD=22.5°,BE=DH,∠AEB=∠HDF=45°,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④.故答案为:①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.18、a>1且a≠3【解析】

首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【详解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠3【点睛】本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.三、解答题(共66分)19、x-3,【解析】

原式括号内先通分,再算减法,然后进行分式的乘法运算,再把x的值代入化简后的式子计算即可.【详解】解:原式=•=•=•=x-3;当x=3+时,原式=3+-3=.【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.20、(1)k=﹣1,b=6;(2)满足条件的点D坐标是(12,﹣12)或(6,﹣6)【解析】

(1)把P、Q的坐标代入反比例函数解析式可求得m、n的值,再把P、Q坐标代入直线解析式可求得k、b的值;(2)结合(1)可先求得A、B坐标,可求得C点坐标,再由条件可求得直线OD的解析式,由BO=CD可求得D点坐标.【详解】解:(1)把P(1,m)代入y=,得m=5,∴P(1,5),把Q(n,1)代入y=,得n=5,∴Q(5,1),P(1,5)、Q(5,1)代入y=kx+b得,解得,即k=﹣1,b=6;(2)由(1)知y=﹣x+6,∴A(6,0)B(0,6)∵C点在直线AB上,∴设C(x,﹣x+6),由AB=AC得,解得x=12或x=0(不合题意,舍去),∴C(12,﹣6),∵直线OD∥BC且过原点,∴直线OD解析式为y=﹣x,∴可设D(a,﹣a),由OB=CD得6=,解得a=12或a=6,∴满足条件的点D坐标是(12,﹣12)或(6,﹣6)【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于把已知点代入解析式21、(1)x+1;(2)-2.【解析】

(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.【详解】(1)原式==x+1;(2)解不等式“”得,∴其负整数解是-3、-2、-1.∴当时,原式=-3+1=-2【点睛】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.22、(1);(2)DE=1.【解析】

(1)由平移的性质可得∠EAC=90°,由旋转的性质可得∠DAC=110°,即可求∠DAE的大小;(2)由“AAS”可证△DAE≌△CAB,可得DE=BC=1.【详解】解:(1)是由沿方向平移得到,所以,,所以,,又,所以,,又线段是由线段绕点按逆时针方向旋转得到即,所以,,(2)依题意,得:,所以,,又,所以,,所以,.【点睛】本题考查了旋转的性质,平移的性质,全等三角形的判定和性质,熟练运用旋转的性质是本题的关键.23、(1)班长代买A种品牌同学录12本,B种品牌同学录15本;(2)a的值为1.【解析】

(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,根据总价=单价×数量结合购买A、B两种品牌同学录27本共花费246元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,依题意,得:,解得:.答:班长代买A种品牌同学录12本,B种品牌同学录15本.(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+1)%]=2550,整理,得:a2﹣1a=0,解得:a1=1,a2=0(舍去).答:a的值为1.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,根据实际问题找出等量关系,列出方程是解题的关键.24、(1)α;(2)证明见解析.【解析】试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.试题解析:(1)∠ADE=90°-α.(2)①证明:∵四边形ABFE是平行四边形,∴AB∥EF.∴∠EDC=∠ABC=α.由(1)知,∠ADE=90°-α,∴∠ADC=∠ADE+∠EDC=90°.∴AD⊥BC.∵AB=AC,∴BD=CD.②证明:∵AB=AC,∠ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论