2023年辽宁省沈阳市第八十二中学数学八年级第二学期期末复习检测试题含解析_第1页
2023年辽宁省沈阳市第八十二中学数学八年级第二学期期末复习检测试题含解析_第2页
2023年辽宁省沈阳市第八十二中学数学八年级第二学期期末复习检测试题含解析_第3页
2023年辽宁省沈阳市第八十二中学数学八年级第二学期期末复习检测试题含解析_第4页
2023年辽宁省沈阳市第八十二中学数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.02.函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>23.如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为()A.40° B.50° C.60° D.70°4.下列运算错误的是A. B.C. D.5.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为()A. B.1.5 C. D.26.如图,下列能判定AB∥CD的条件的个数是()①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠1.A.1个 B.2个 C.3个 D.4个7.经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和()A.比原多边形多 B.比原多边形少 C.与原多边形外角和相等 D.不确定8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.直角三角形 C.等边三角形 D.平行四边形9.已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是10.化简(+2)的结果是()A.2+2 B.2+ C.4 D.3二、填空题(每小题3分,共24分)11.若二次根式在实数范围内有意义,则实数x的取值范围是_____.12.我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____13.如图,在的两边上分别截取、,使,分别以点、为圆心,长为半径作弧,两弧交于点;连接、、、.若,四边形的周长为,则的长为___________.14.把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点,,则点的坐标为________.16.把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.17.在平面直角坐标系中,点到坐标原点的距离是______.18.如图,△A1OM是腰长为1的等腰直角三角形,以A1M为一边,作A1A2⊥A1M,且A1A2=1,连接A2M,再以A2M为一边,作A2A3⊥A2M,且A2A3=1,则A1M=_____,照此规律操作下去…则AnM=_____.三、解答题(共66分)19.(10分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?20.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.ΔABC的三个顶点A,B,C都在格点上,将ΔABC绕点A按顺时针方向旋转90∘得到ΔA(1)在正方形网格中,画出ΔAB(2)画出ΔAB'C'向左平移(3)计算线段AB在变换到AB'21.(6分)在ΔABC中,∠C=90°,AC=BC,BP是ΔABC的角平分线,过点P作PD⊥AB于点D,将∠EPF绕点P旋转,使∠EPF的两边交直线AB于点E,交直线BC于点F,请解答下列问题:(1)当∠EPF绕点P旋转到如图1的位置,点E在线段AD上,点F在线段BC上时,且满足PE=PF.①请判断线段CP、CF、AE之间的数量关系,并加以证明②求出∠EPF的度数.(2)当∠EPF保持等于(1)中度数且绕点P旋转到图2的位置时,若∠CFP=60°,BE=3+6-122.(8分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.23.(8分)平面直角坐标系中,点O为坐标原点,菱形OABC中的顶点B在x轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点C的坐标为(3,﹣4).(1)点A的坐标为_____;(2)若将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y=(x>0)的图象上,则该菱形向上平移的距离为_____.24.(8分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.(1)若点是轴上的一动点,连接、,当的值最小时,求出点的坐标及的最小值;(2)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.25.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.(1)求tan∠ABD的值.(2)当点F落在AC边上时,求t的值.(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.26.(10分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.【详解】原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.【点睛】理解无解的含义是解题的关键.2、A【解析】

根据分母不为0列式求值即可.【详解】由题意得x﹣1≠0,解得:x≠1.故选:A.【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.3、D【解析】

根据翻折不变性即可解决问题;【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠FEC,由翻折不变性可知:∠FEA=∠FEC,∵∠1=70°,∴∠FEA=70°,故选D.【点睛】本题考查了矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题.4、A【解析】

根据二次根式的加减法、乘法、除法逐项进行计算即可得.【详解】A.与不是同类二次根式,不能合并,故错误,符合题意;B.,正确,不符合题意;C.=,正确,不符合题意;D.,正确,不符合题意.故选A.【点睛】本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.5、A【解析】

由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.【详解】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,∵由勾股定理得:BE=,∴BC=BE=,故选:A.【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.6、B【解析】

根据平行线的判定定理分别进行判断即可.【详解】解:①当∠B+∠BCD=180°,AB∥CD,故正确;②当∠3=∠2时,AB=BC,故错误;③当∠1=∠4时,AD=DC,故错误;④当∠B=∠1时,AB∥CD,故正确.所以正确的有2个故选:B.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.7、C【解析】

根据外角和的定义即可得出答案.【详解】多边形外角和均为360°,故答案选择C.【点睛】本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.8、A【解析】

根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点.【详解】A.既是轴对称图形,又是中心对称图形,符合题意;B.既不是轴对称图形,也不是中心对称图形,不符合题意;C.是轴对称图形,不是中心对称图形,不符合题意;D.不是轴对称图形是中心对称图形,不符合题意;故选A.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的定义是解答本题的关键.9、D【解析】

要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【详解】在已知样本数据1,1,4,3,5中,平均数是3;

根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.

故选:D.【点睛】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.10、A【解析】试题解析:(+2)=2+2.故选A.二、填空题(每小题3分,共24分)11、x<1【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】解:∵二次根式在实数范围内有意义,∴1﹣x>0,解得:x<1.故答案为:x<1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12、(32,48)【解析】

先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.【详解】解:2018是第1009个数,设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,当n=31时,n2=961,当n=32时,n2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924,则2018是第+1=48个数,故A2018=(32,48).故答案为:(32,48).【点睛】此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.13、【解析】

OC与AB相交于D,如图,利用作法得到OA=OB=AC=BC,则可判断四边形OACB为菱形,根据菱形的性质得到OC⊥AB,AD=BD=1,OD=CD,然后利用勾股定理计算出OD,从而得到OC的长.【详解】解:OC与AB相交于D,如图,由作法得OA=OB=AC=BC,∴四边形OACB为菱形,∴OC⊥AB,AD=BD=1,OD=CD,∵四边形OACB的周长为8cm,∴OB=2,在Rt△OBD中,OD=,∴OC=2OD=2cm.故答案为.【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).14、105【解析】

根据三角板上的特殊角度,外角与内角的关系解答.【详解】根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,∵∠α是△BDE的外角,∴∠α=∠AEB+∠B=45°+60°=105°故答案为:105.【点睛】此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.15、(1,2)【解析】

先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵AO=,BO=2,∴AB=,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=1.∴点B2018的纵坐标为:2.∴点B2018的坐标为:(1,2),故答案是:(1,2).【点睛】考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.16、1<m<1.【解析】

直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.【详解】解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:1<m<1.故答案为1<m<1.【点睛】本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.17、5【解析】

根据勾股定理解答即可.【详解】点P到原点O距离是.故答案为:5【点睛】此题考查勾股定理,关键是根据勾股定理得出距离.18、.【解析】分析:根据勾股定理分别求出直角三角形的斜边长,从而得出一般性的规律.详解:∵,,,……,.点睛:本题主要考查的是直角三角形的勾股定理以及规律的发现,属于基础题型.解决这种问题的关键就是得出前面几个三角形的斜边,从而得出一般性的规律.三、解答题(共66分)19、(1)8元;(2)1元.【解析】

(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批手机壳进货单价为x元,

根据题意得:3•=,

解得:x=8,

经检验,x=8是分式方程的解.

答:第一批手机壳的进货单价是8元;

(2)设销售单价为m元,

根据题意得:200(m-8)+600(m-10)≥2000,

解得:m≥1.

答:销售单价至少为1元.【点睛】本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.20、(1)见解析;(2)见解析;(3)25π4【解析】

(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用扇形面积求法得出答案.【详解】(1)如图所示:△AB'C'即为所求;(2)如图所示:△A'B″C″即为所求;(3)由勾股定理得AB=5,线段AB在变换到AB'的过程中扫过区域的面积为:90π×52【点睛】本题考查了旋转变换以及平移变换,正确得出对应点位置是解题的关键.21、(1)①CP-CF=AE,理由见解析;②∠EPF=135°;(2)SΔAEP【解析】

(1)①根据角平分线的性质得到PD=PC,②根据全等三角形的性质即可得到答案;(2)根据全等三角形的性质和判定即可得到答案;【详解】(1)①CP-CF=AE∵PD⊥AB∴∠PDE=∠C=90°,∵BP平分∠ABC∴PD=PC又∵PE=PF∴RtΔPDE   ∴DE=CF∵ΔABC中,∠C=90°∴∠A=∠ABC=45°∴∠APD=∠A=45°∴AD=PD∴AD=CP∵AD-DE=AE∴CP-CF=AE②∵ΔPCF∴∠DPE=∠CPF∴∠EPF=∠DPC∵∠ABC=45°∴∠DPC=360°-90°-90°-45°=135°∴∠EPF=135°(2)∵∠EPF=135°∴∠DPE=∠CPF又∵∠PCF=∠PDE=90°∴ΔPDE∴DE=CF∵PC=PD∴RtΔPCB∴BC=BD设DE=CF=x,则BD=BC=AB=∵∠CFP=60°,∴∠CPF=30°∴PF=2x,PC=∴PD=AD=PC=∴AB=AE+BE=∴2∴x=1∴AE=∴SΔAEP【点睛】本题考查角平分线的性质、全等三角形的性质和判定,解题的关键是掌握角平分线的性质、全等三角形的性质和判定.22、(1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).【解析】

(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.【详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,∴S△ABC=AC•BC=×2×1=1.故答案为1;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=﹣x+;(3)当k>2时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;当k<2时,y=kx+2过B(5,1),1=5k+2,解得k=﹣,∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;(1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=﹣x+n,∵C点坐标是(1,1),∴1=﹣+n,解得n=,∴直线CP的解析式为y=﹣x+,∴P(2,).设直线AB:y=﹣x+交y轴于点D,则D(2,).将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).综上所述,所求P点坐标是(2,)或(2,).故答案为(2,)或(2,).【点睛】本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.23、(1)(3,4)(2)2或8【解析】

(1)根据菱形的对称性,得A(3,4)(2)则反比例函数为则B(6,0),若点B向上平移到反比例函数上.则B(6,2),即向上平移2个单位;若点C在反比例函数上,则C(3,4),即向上平移8个单位.故该菱形向上平移的距离为2或8.24、(1),;(2)α的值为45°,90°,135°,180°.【解析】

(1)作HG⊥OB于H.由HG∥AO,求出OG,HG,即可得到点H的坐标,作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),此时MB+MH的值最小,最小值等于B'H的长;求得直线B′H的解析式为y=,即可得到点M的坐标为.

(2)依据△OST为等腰三角形,分4种情况画出图形,即可得到旋转角的度数.【详解】解:(1)如图1,作HG⊥OB于H.

∵HG∥AO,

∴∵OB=2,OA=,

∴GB=,HG=,

∴OG=OB-GB=,

∴H(,)作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),

此时MB+MH的值最小,最小值等于B'H的长.∵B'(-2,0),H(,)B'H=∴MB+MH的最小值为设直线B'H的解析式为y=kx+b,则有解得:∴直线B′H的解析式为当x=0时,y=∴点M的坐标为:(2)如图,当OT=OS时,α=75°-30°=45°;

如图,当OT=TS时,α=90°;

如图,当OT=OS时,α=90°+60°-15°=135°;

如图,当ST=OS时,α=180°;

综上所述,α的值为45°,90°,135°,180°.【点睛】本题考查几何变换综合题、平行线分线段成比例定理、轴对称最短问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.25、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.【解析】

(1)过点D作DH⊥BC于点H,可得△ABD≌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论