2023年宁夏银川九中学八年级数学第二学期期末质量跟踪监视试题含解析_第1页
2023年宁夏银川九中学八年级数学第二学期期末质量跟踪监视试题含解析_第2页
2023年宁夏银川九中学八年级数学第二学期期末质量跟踪监视试题含解析_第3页
2023年宁夏银川九中学八年级数学第二学期期末质量跟踪监视试题含解析_第4页
2023年宁夏银川九中学八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图所示,E、F分别是□ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=2cm2,S△BQC=4cm2,则阴影部分的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm22.方差是表示一组数据的A.变化范围 B.平均水平 C.数据个数 D.波动大小3.如图,已知,那么添加下列一个条件后,仍然无法判定的是()A. B. C. D.4.已知一次函数,y随着x的增大而减小,且,则它的大致图象是()A. B. C. D.5.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为()A.1 B.2 C.3 D.46.将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位7.已知正比例函数的图象经过点(1,-2),则正比例函数的解析式为()A. B. C. D.8.下列命题中,有几个真命题()①同位角相等②直角三角形的两个锐角互余③平行四边形的对角线互相平分且相等④对顶角相等A.1个 B.2个 C.3个 D.4个9.下列命题的逆命题正确的是()A.如果两个角都是45°,那么它们相等 B.全等三角形的周长相等C.同位角相等,两直线平行 D.若a=b,则10.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.13511.在一次函数y=kx+1中,若y随x的增大而增大,则它的图象不经过第()象限A.四B.三C.二D.一12.如果分式有意义,那么的取值范围是()A. B.C. D.或二、填空题(每题4分,共24分)13.若整数m满足,且,则m的值为___________.14.在中,,则___.15.当a=+1,b=-1时,代数式的值是________.16.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5cm,高为12cm,吸管放进杯子里,杯口外面至少要露出5.2cm,则吸管的长度至少为_______cm.17.已知在同一坐标系中,某正比例函数与某反比例函数的图像交于A,B两点,若点A的坐标为(-1,4),则点B的坐标为___.18.某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.三、解答题(共78分)19.(8分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?20.(8分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,写出求BE的长的思路.21.(8分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF22.(10分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.23.(10分)计算或解方程①②24.(10分)已知,反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1.(1)求这个一次函数的表达式;(2)若点P(m,n)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;(3)若M(x1,y1),N(x2,y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2,y1+y2=3,求△MON的面积.25.(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.26.如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.

参考答案一、选择题(每题4分,共48分)1、A【解析】

连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.【详解】连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=1cm1,S△BQC=4cm1,∴S四边形EPFQ=6cm1,故阴影部分的面积为6cm1.故选A.【点睛】本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.2、D【解析】

根据方差的意义进行求解即可得.【详解】方差是用来表示一组数据波动大小的量,故选D.【点睛】本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、A【解析】

先根据∠DAB=∠CAE得出∠DAE=∠BAC,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC.A.∵,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项正确;B.∵,∴△ABC∽△ADE,故本选项错误;C.∵∠B=∠D,∴△ABC∽△ADE,故本选项错误;D.∵∠C=∠AED,∴△ABC∽△ADE,故本选项错误.故选A.【点睛】本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.4、A【解析】

由y随着x的增大而减小,可知,根据k,b的取值范围即可确定一次函数所经过的象限.【详解】解:y随着x的增大而减小,又一次函数的图像经过第一、二、四象限,不经过第三象限.故答案为:A【点睛】本题考查了一次函数的图像与性质,确定k的取值范围是解题的关键.5、B【解析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.6、A【解析】

纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.【详解】由于图形各顶点的横坐标都减去2,故图形只向左移动2个单位,故选A.【点睛】本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.7、B【解析】

利用待定系数法把(1,-2)代入正比例函数y=kx中计算出k即可得到解析式.【详解】根据点在直线上,点的坐标满足方程的关系,将(1,-2)代入,得:,∴正比例函数的解析式为.故选B.8、B【解析】

解:①只有在两直线平行的前提下,同位角才相等,错误;②直角三角形的两个锐角互余,正确;③平行四边形的对角线互相平分,不一定相等,错误;④对顶角相等,正确故选B9、C【解析】

交换原命题的题设与结论得到四个命题的逆命题,然后分别根据三角形的概念、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】A.

逆命题为:如果两个角相等,那么它们都是45°,此逆命题为假命题;

B.

逆命题为:周长相等的两三角形全等,此逆命题为假命题;

C.

逆命题为:两直线平行,同位角相等,此逆命题为真命题;

D.

逆命题为:若a2=b2,则a=b,此逆命题为假命题.

故选C.【点睛】本题考查命题与定理,解题的关键是掌握三角形的概念、全等三角形的判定、平行线的性质和平方根的定义.10、C【解析】

当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,Cn分别是AB,AC的n等分点时,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);当n=10时,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故选C.11、A【解析】

利用一次函数的性质得到k>0,则可判断直线y=kx+1经过第一、三象限,然后利用直线y=kx+1与y轴的交点为(0,1)可判断直线y=kx+1不经过第四象限.【详解】∵y=kx+1,y随x的增大而增大,∴k>0,∴直线y=kx+1经过第一、三象限,而直线y=kx+1与y轴的交点为(0,1),∴直线y=kx+1经过第一、二、三象限,不经过第四象限.故选:A.【点睛】本题考查了一次函数的性质:对于一次函数y=kx+b,当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.12、C【解析】

分式有意义,则分式的分母不为0,可得关于x的不等式,解不等式即得答案.【详解】解:要使分式有意义,则x+1≠0,解得,故选C.【点睛】本题考查了分式有意义的条件,属于基础题型,分式的分母不为0是分式有意义的前提条件.二、填空题(每题4分,共24分)13、,,.【解析】

由二次根式的性质,得到,结合,即可求出整数m的值.【详解】解:∵,∴,∴,∵,∴,∴整数m的值为:,,;故答案为:,,.【点睛】本题考查了二次根式的性质,以及解一元一次不等式,解题的关键是熟练掌握二次根式的性质,正确得到m的取值范围.14、.【解析】

根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°;再根据∠A+∠C=120°计算出∠A的度数,进而可算出∠B的度数.【详解】四边形是平行四边形,,,,,.故答案为:.【点睛】本题是一道有关平行四边形的题目,掌握平行四边形的性质是解题关键.15、【解析】分析:根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.详解:∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴====.故答案为.点睛:本题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.16、18.2【解析】

由于吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,故可先利用勾股定理求出AC的长,进而可得出结论.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;

Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:;故吸管的长度最少要:13+5.2=18.2(cm).故答案为:18.2.【点睛】本题考查勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.17、(1,−4)【解析】

根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.【详解】∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,

∵一个交点的坐标为(−1,4),

∴它的另一个交点的坐标是(1,−4),

故答案为:(1,−4).【点睛】本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.18、【解析】

因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.【详解】解:∵x≥3,∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).故答案是:.【点睛】此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.三、解答题(共78分)19、至少购进玫瑰200枝.【解析】

由康乃馨和玫瑰共500枝,可设玫瑰x枝,康乃馨(500-x)枝,可求出每种花的总进价,再利用两种花总进价和“不多于900元”列出不等式并解答.【详解】解:设购进玫瑰x枝,则购进康乃馨(500-x)枝,列不等式得:1.5x+2(500-x)≤900解得:x≥200答:至少购进玫瑰200枝.【点睛】本题考查了一元一次不等式的应用,关键是找准不等关系列不等式,是常考题型.20、(1)见解析;(2)见解析.【解析】【分析】(1)由平行四边形性质得AB∥CD,可得∠ABC+∠BCD=180°,又BE,CF分别是∠ABC,∠BCD的平分线,所以∠EBC+∠FCB=90°,可得∠BGC=90°;(2)作EH∥AB交BC于点H,连接AH交BE于点P.证四边形ABHE是菱形,可知AH,BE互相垂直平分,在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABC+∠BCD=180°.∵BE,CF分别是∠ABC,∠BCD的平分线,∴∠EBC=∠ABC,∠FCB=∠BCD.∴∠EBC+∠FCB=90°.∴∠BGC=90°.即BE⊥CF.(2)求解思路如下:a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=;d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.【点睛】本题考核知识点:平行四边形,菱形.解题关键点:熟记平行四边形和菱形的性质和判定.21、见解析【解析】

根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.【详解】证明:∵四边形ABCD是平行四边形,

且E、F分别是BC、AD上的点,

∴AF=EC,

又∵四边形ABCD是平行四边形,

∴AD∥BC,即AF∥EC.

∴四边形AFCE是平行四边形,

∴AE=CF.【点睛】本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.22、(1)见解析;(2)见解析.【解析】

(1)由四边形ABCD是平行四边形,可得AD∥BC,又BE∥DF,可证四边形BFDE是平行四边形;(2)由四边形ABCD是平行四边形,可得AD=BC,又ED=BF,从而AD-ED=BC-BF,即AE=CF.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,即DE∥BF.∵BE∥DF,∴四边形BFDE是平行四边形;(2)∵四边形ABCD是平行四边形,∴AD=BC,∵四边形BFDE是平行四边形,∴ED=BF,∴AD-ED=BC-BF,即AE=CF.【点睛】本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.23、(1);(2),【解析】

(1)根据二次根式的加法和乘法的运算法则计算即可(2)先化成一般形式,然后运用配方法计算即可【详解】解:①②化简得:配方得:解得:∴,【点睛】本题考查了二次根式的混合运算以及一元二次方程得解法,熟练掌握相关的知识是解题的关键24、(1)y=-x-2;(2)m2+n2=12;(2)S△MON=2【解析】

(1)先求得A、B的坐标,然后根据待定系数法求解即可;(2)由点P与点Q关于x轴对称可得点Q的坐标,然后根据图象上点的坐标特征可求得mn=2,n=m+2,然后代入所求式子整理化简即得结果;(2)如图,过M作MG⊥x轴于G,过N作NH⊥x轴于H,根据反比例函数系数k的几何意义,利用S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG即可求得结果.【详解】解:(1)∵反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1,∴A(﹣1,﹣2),B(﹣2,﹣1),设一次函数的表达式为y=kx+b,把A(﹣1,﹣2),B(﹣2,﹣1)代入,得:,解得,∴这个一次函数的表达式为y=﹣x﹣2;(2)∵点P(m,n)与点Q关于x轴对称,∴Q(m,-n),∵点P(m,n)在反比例函数图象上,∴mn=2,∵点Q恰好落在一次函数的图象上,∴﹣n=﹣m﹣2,即n=m+2,∴m(m+2)=2,∴m2+2m=2,∴m2+n2=m2+(m+2)2=2m2+6m+9=2(m2+2m)+9=2×2+9=12;(2)如图,过M作MG⊥x轴于G,过N作NH⊥x轴于H,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论