![2023年山东省临沂市青云镇中学心中学数学八年级第二学期期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/705c53ed8b96660b6f1d7accdb18645e/705c53ed8b96660b6f1d7accdb18645e1.gif)
![2023年山东省临沂市青云镇中学心中学数学八年级第二学期期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/705c53ed8b96660b6f1d7accdb18645e/705c53ed8b96660b6f1d7accdb18645e2.gif)
![2023年山东省临沂市青云镇中学心中学数学八年级第二学期期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/705c53ed8b96660b6f1d7accdb18645e/705c53ed8b96660b6f1d7accdb18645e3.gif)
![2023年山东省临沂市青云镇中学心中学数学八年级第二学期期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/705c53ed8b96660b6f1d7accdb18645e/705c53ed8b96660b6f1d7accdb18645e4.gif)
![2023年山东省临沂市青云镇中学心中学数学八年级第二学期期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/705c53ed8b96660b6f1d7accdb18645e/705c53ed8b96660b6f1d7accdb18645e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长是()A.6.5 B.8.5 C.13 D.2.如图,已知AB∥CD,OA:OD=1:4,点M、N分别是OC、OD的中点,则ΔABO与四边形CDNM的面积比为().A.1:4 B.1:8 C.1:12 D.1:163.已知(4+)•a=b,若b是整数,则a的值可能是()A. B.4+ C.4﹣ D.2﹣4.如图,在正方形ABCD的外侧,以AD为边作等边△ADE,连接BE,则∠AEB的度数为()A.15° B.20° C.25° D.30°5.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1006.某青年排球队12名队员的年龄情况如下表所示:这12名队员的平均年龄是()A.18岁 B.19岁 C.20岁 D.21岁7.已知一元二次方程2x2﹣5x+1=0的两根为x1,x2,下列结论正确的是()A.两根之和等于﹣,两根之积等于1B.x1,x2都是有理数C.x1,x2为一正一负根D.x1,x2都是正数8.下列各式中,能用完全平方公式分解的个数为()
①;②;③;④;⑤.A.1个 B.2个 C.3个 D.4个9.如图,直线y=x+与y=kx-1相交于点P,点P的纵坐标为,则关于x的不等式x+>kx-1的解集在数轴上表示正确的是()A. B. C. D.10.已知一次函数,随的增大而减小,则的取值范围是()A. B. C. D.11.关于反比例函数y=的下列说法正确的是()①该函数的图象在第二、四象限;②A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;③当x>2时,则y>-2;④若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.A.①③ B.①④ C.②③ D.②④12.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°二、填空题(每题4分,共24分)13.若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.14.如图,x轴正半轴上,顶点D在y轴正半轴上,反比例函数y=(x>0)的图象与正比例函数y=x的图象交于点A.BC边经过点A,CD边与反比例函数图象交于点E,四边形OACE的面积为6.则点A的坐标为_____;15.计算_____.16.已知菱形两条对角线的长分别为4和6,则菱形的边长为______.17.观察下列各式,并回答下列问题:①;②;③;……(1)写出第④个等式:________;(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.18.若α是锐角且sinα=,则α的度数是.三、解答题(共78分)19.(8分)如图,在由边长为1的小正方形组成的网格中,的三个顶点均在格点上,请解答:(1)判断的形状,并说明理由;(2)在网格图中画出AD//BC,且AD=BC;(3)连接CD,若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.20.(8分)如图,点在等边三角形的边,延长至,使,连接交于.求证:.21.(8分)小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,并绘制成如下统计图.请根据统计图提供的信息,解答下列问题(1)小丽共调查了名居民的年龄,扇形统计图中a=%,b=%;(2)补全条形统计图;(3)若该辖区0~14岁的居民约有3500人,请估计年龄在60岁以上的居民人数.22.(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为27823.(10分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:(1)本次调查学生共人,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.24.(10分)如图,在□ABCD中,点E、F在对角线BD上,且BE=DF,(1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.25.(12分)甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.(1)请填写下表:(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:平均数方差中位数命中9环以上的次数(包括9环)甲71.21乙5.47.5(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)26.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式;
参考答案一、选择题(每题4分,共48分)1、A【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【详解】如图,在△ABC中,∠C=90°,AC=12,BC=1则根据勾股定理知,AB==13∵CD为斜边AB上的中线∴CD=AB=6.1.故选:A.【点睛】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.2、C【解析】∵AB∥CD,OA:OD=1:4,∴ΔABO与ΔDCO的面积比为1:16又∵点M、N分别是OC、OD的中点,∴ΔOMN与四边形CDNM的面积比为1:3∴ΔABO与四边形CDNM的面积比为1:123、C【解析】
找出括号中式子的有理化因式即可得.【详解】解:(4+)×(4-)=42-()2=16-3=13,是整数,所以a的值可能为4-,故选C【点睛】本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.4、A【解析】
根据△ADE为等边三角形,即可得出AE=AD,则AE=AB,由此可以判断△ABE为等腰三角形.△ADE为等边三角形,则∠DAE=60°,由此可以得出∠BAE=150°,根据△ABE为等腰三角形,即可得出∠AEB的度数.【详解】∵△ADE为等边三角形,∴AE=AD、∠DAE=60°,∵四边形ABCD为正方形,则AB=AD,∴AE=AB,则△ABE为等腰三角形,∴∠AEB=∠ABE====15°,则答案为A.【点睛】解决本题的关键在于得出△ABE为等腰三角形,再根据等腰三角的性质得出∠AEB的读数.5、B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:﹣=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6、C【解析】
根据平均数的公式求解即可.【详解】这12名队员的平均年龄是(岁),故选:C.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.7、D【解析】
根据根与系数的关系,可得答案.【详解】解:A、x1+x2=,x1•x2=,故A错误;B、x1==,x2==,故B错误;C、x1==>0,x2==>0,故C错误;D、x1==>0,x2==>0,故D正确;故选:D.【点睛】本题考查查了根与系数的关系,利用根与系数的关系是解题关键.8、B【解析】
分别利用完全平方公式分解因式得出即可【详解】①=,符合题意;②;不能用完全平方公式分解,不符合题意③;不能用完全平方公式分解,不符合题意④=-,符合题意;⑤,不可以用完全平方公式分解,不符合题意故选:B.【点睛】本题考查因式分解,熟练掌握运算法则是解题关键.9、A【解析】
先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.【详解】把代入,得,解得.当时,,所以关于x的不等式的解集为,用数轴表示为:.故选A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.10、B【解析】
根据一次函数的图像性质即可求解.【详解】依题意得k-2<0,解得故选B.【点睛】此题主要考查一次函数的性质,解题的关键是熟知k的性质.11、B【解析】【分析】根据反比例函数的图象与性质逐一进行判断即可得.【详解】①k=-4<0,图象在二、四象限,故①正确;②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;④联立,则有,整理得:x2+bx+4=0,因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,所以-4<b<4,故选B.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.12、A【解析】
根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【详解】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C,∠AOC=80°∴∠DOC=80°﹣α∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选:A.【点睛】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.二、填空题(每题4分,共24分)13、【解析】
设这个一次函数的表达式y=-1x+b,把代入即可.【详解】设这个一次函数的表达式y=-1x+b,把代入,得-4+b=-1,∴b=3,∴.故答案为:.【点睛】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.14、(3,2)【解析】
把反比例函数与正比例函数的解析式组成方程组即可求出A点坐标;【详解】∵点A是反比例函数y=(x>0)的图象与正比例函数y=x的图象的交点,∴,解得(舍去)或∴A(3,2);故答案为:(3,2)【点睛】此题考查反比例函数,解题关键在于把反比例函数与正比例函数的解析式组成方程组15、-【解析】【分析】先分别进行二次根式的化简、二次根式的乘法运算,然后再进行二次根式的加减运算即可得.【详解】-==,故答案为.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的顺序以及运算法则是解题的关键.16、【解析】
根据菱形的性质及勾股定理即可求得菱形的边长.【详解】解:因为菱形的对角线互相垂直平分,
所以对角线的一半为2和3,根据勾股定理可得菱形的边长为故答案为:.【点睛】此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.17、(1);(2)猜想:【解析】
(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.【详解】(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:故答案为:(2)猜想:用含自然数的代数式可表示为:证明:左边右边,所以猜想正确.【点睛】本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.18、60°【解析】试题分析:由α是锐角且sinα=,可得∠α=60°.考点:特殊角的三角函数值三、解答题(共78分)19、(1)是直角三角形,理由见解析;(2)图见解析;(3)四边形是菱形,理由见解析.【解析】
(1)先结合网格特点,利用勾股定理求出三边长,再根据勾股定理的逆定理即可得;(2)先利用平移的性质得到点D,再连接AD即可;(3)先根据线段中点的定义、等量代换可得,再根据平行四边形的判定可得四边形AECF是平行四边形,然后根据直角三角形的性质可得,最后根据菱形的判定、正方形的判定即可得.【详解】(1)是直角三角形,理由如下:,,即是直角三角形;(2)由平移的性质可知,先将点B向下平移3个单位,再向右平移4个单位可得点C同样,先将点A向下平移3个单位,再向右平移4个单位可得点D,然后连接AD则有,且,作图结果如下所示:(3)四边形是菱形,理由如下:为中点,为中点,,即四边形是平行四边形又为中点,是的斜边平行四边形是菱形不是等腰直角三角形与BC不垂直,即菱形不是正方形综上,四边形是菱形.【点睛】本题考查了作图—平移、勾股定理与勾股定理的逆定理、菱形的判定、正方形的判定等知识点,较难的是题(3),熟练掌握特殊四边形的判定方法是解题关键.20、证明见解析.【解析】
作DG//AC,交AB于G,利用等边三角形的性质得出△BDG为等边三角形,再利用ASA得出△DFG≌△EAF,即可解答【详解】证明:作DG//AC,交AB于G,∵等边三角形ABC∴∠BDG=∠C=60°∴∠BGD=∠BAC=60°所以△BDG为等边三角形∴GD=BD=AE∵∠GDF=∠E,∠DGF=∠EAF∴△DFG≌△EAF∴FD=EF.【点睛】此题考查等边三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线21、(1)500,20%,12%;(2)110,图见解析;(3)2100人【解析】
(1)由题意根据“15~40”的百分比和频数可求总数,进而求出a、b的值;(2)根据题意利用总数和百分比求出频数再补全条形图即可;(3)根据题意用样本估计总体,进而得出年龄在60岁以上的居民人数即可.【详解】解:(1)解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,0~14岁有100人,60岁以上有60人,所以.故答案为:500,20%,12%.(2)由题意可得41-59岁有:22%500=110(人),画图如下,(3)由题意估计出总人数:(人),年龄在60岁以上的居民人数:(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22、(1)k=34;(2)△OPA的面积S=94x+18(﹣8<x<0);(3)点P坐标为(-132,98)或(-19【解析】
(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.(3)分点P在x轴上方与下方两种情况分别求解即可得.【详解】(1)∵直线y=kx+6过点E(﹣8,0),∴0=﹣8k+6,k=34(2)∵点A的坐标为(﹣6,0),∴OA=6,∵点P(x,y)是第二象限内的直线上的一个动点,∴△OPA的面积S=12×6×(34x+6)=(3)设点P的坐标为(m,n),则有S△AOP=12即62解得:n=±98当n=98时,98=34x+6,解得此时点P在x轴上方,其坐标为(-132,当n=-98时,-98=34x+6,解得此时点P在x轴下方,其坐标为(-192,综上,点P坐标为:(-132,98)或(-【点睛】本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.23、(1)300;(2)选择“跑步”这种活动的学生约有800人;(3)【解析】
(1)用A类的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它项目的人数,求出跳绳的人数,从而补全统计图;(2)用该校的总人数乘以“跑步”的人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,找出每班抽取的两种形式恰好是“做操”和“跳绳”的结果数,然后利用概率公式求解.【详解】(1)根据题意得:120÷40%=300(人),所以本次共调查了300名学生;跳绳的有300﹣120﹣60﹣90=30人,补图如下:故答案为:300;(2)根据题意得:2000×40%=800(人),答:选择“跑步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24、(1)证明见试题解析;(2)证明见试题解析.【解析】
(1)根据平行四边形的性质可得AB=CD,AB∥CD,然后可证明∠ABE=∠CDF,再利用SAS来判定△ABE≌△DCF,从而得出AE=CF.(2)首先根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代学校宿舍楼智能化装修设计方案
- 2025年度货车转让合同及道路运输许可证申请与办理服务
- 2025年度解除劳动合同关系及社会保险转移协议
- 村行优化服务助力小微企业的实践与思考
- 2025年度购房贷款利率调整通知函合同
- 2025年度电子版就业协议书(虚拟现实)-VRAR技术研发中心员工合同
- 2025年度能源项目股权转让协议示范文本合同
- 2025年度版档口租赁与跨境电商合作合同
- 绿色出行文明驾驶与环境保护
- 高校科研实验室的建设与管理经验分享
- 04S519小型排水构筑物(含隔油池)图集
- YB∕T 4146-2016 高碳铬轴承钢无缝钢管
- 多图中华民族共同体概论课件第十三讲先锋队与中华民族独立解放(1919-1949)根据高等教育出版社教材制作
- 高考英语单词3500(乱序版)
- 《社区康复》课件-第五章 脊髓损伤患者的社区康复实践
- 北方、南方戏剧圈的杂剧文档
- 灯谜大全及答案1000个
- 部编小学语文(6年级下册第6单元)作业设计
- 洗衣机事业部精益降本总结及规划 -美的集团制造年会
- 2015-2022年湖南高速铁路职业技术学院高职单招语文/数学/英语笔试参考题库含答案解析
- 铝合金门窗设计说明
评论
0/150
提交评论