福建福州市台江区华伦中学2023年数学八年级第二学期期末复习检测试题含解析_第1页
福建福州市台江区华伦中学2023年数学八年级第二学期期末复习检测试题含解析_第2页
福建福州市台江区华伦中学2023年数学八年级第二学期期末复习检测试题含解析_第3页
福建福州市台江区华伦中学2023年数学八年级第二学期期末复习检测试题含解析_第4页
福建福州市台江区华伦中学2023年数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是A. B.C. D.2.若一个函数中,随的增大而增大,且,则它的图象大致是()A. B.C. D.3.一组数:3,5,4,2,3的中位数是()A.2 B.3 C.3.5 D.44.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A. B.C. D.5.计算结果正确的是()A. B. C. D.6.某商品降价后欲恢复原价,则提价的百分数为().A. B. C. D.7.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60° B.∠A=120° C.∠C+∠D=180° D.∠C+∠A=180°8.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数 B.平均数 C.众数 D.方差9.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁10.下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形 B.平行四边形 C.正五边形 D.正三角形二、填空题(每小题3分,共24分)11.若,则的取值范围是_________.12.若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.13.已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.14.若,则_____.15.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为__________.16.如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.17.在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN的周长最小是2+,则BD的长为___________.18.某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:尺码/厘米2222.52323.52424.525销售量/双12311864该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.三、解答题(共66分)19.(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.学校若干名学生成绩分布统计表分数段(成绩为x分)频数频率50≤x<60160.0860≤x<70a0.3170≤x<80720.3680≤x<90cd90≤x≤10012b(1)此次抽样调查的样本容量是;(2)写出表中的a=,b=,c=;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?20.(6分)(1)因式分解:;(2)解方程:21.(6分)已知,矩形中,,的垂直平分线分别交于点,垂足为.(1)如图1,连接,求证:四边形为菱形;(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.②若点的运动路程分别为(单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.22.(8分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.23.(8分)某校计划成立下列学生社团:A.合唱团:B.英语俱乐部:C.动漫创作社;D.文学社:E.航模工作室为了解同学们对上述学生社团的喜爱情况某课题小组在全校学生中随机抽取了部分同学,进行“你最喜爱的一个学生社团”的调查,根据调查结果绘制了如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次接受调查的学生共有多少人;(2)补全条形统计图,扇形统计图中D选项所对应扇形的圆心角为多少;(3)若该学校共有学生3000人,估计该学校学生中喜爱合唱团和动漫创作社的总人数.24.(8分)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)菱形ABCO的边长(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,①当0<t<时,求S与t之间的函数关系式;②在点P运动过程中,当S=3,请直接写出t的值.25.(10分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由26.(10分)如图,正方形中,为上的点,是的延长线的点,且,过作垂足为交于点.(1)求证:;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、B。【解析】当点P由点A向点D运动时,y的值为0;当点p在DC上运动时,y随着x的增大而增大;当点p在CB上运动时,y不变;当点P在BA上运动时,y随x的增大而减小。故选B。2、B【解析】

根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像.【详解】根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像为B故选B【点睛】本题主要考查了一次函数的图像,以及和对图像的影响,掌握一次函数的图像和性质是解题的关键.3、B【解析】

按大小顺序排列这组数据,最中间那个数是中位数.【详解】解:从小到大排列此数据为:2,1,1,4,5,位置处于最中间的数是1,

所以这组数据的中位数是1.

故选:B.【点睛】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4、C【解析】

根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.【详解】A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,故选C.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.5、A【解析】

直接根据进行计算即可.【详解】解:;故选:A.【点睛】本题考查了二次根式的计算与化简,解题的关键是熟练掌握二次根式的运算法则.6、C【解析】解:设原价为元,提价百分数为,则,解得,故选.7、D【解析】

解:∵四边形ABCD是平行四边形,∴∠D=∠B=60°.故A正确;∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;∵AD∥BC,∴∠C+∠D=180°,故C正确;∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,故选D.8、A【解析】

根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.9、D【解析】∵0.036>0.035>0.028>0.015,∴丁最稳定,故选D.10、A【解析】试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合.考点:轴对称图形与中心对称图形.二、填空题(每小题3分,共24分)11、a≤3【解析】

根据算术平方根的非负性,可以得到3-a≥0,即可求得a得取值范围.【详解】解:由表示算术平方根具有非负性,则3-a≥0,即a≤3.【点睛】本题考查算平方根的性质,正确、灵活运用算术平方根的非负性是解答本题的关键.12、20:15:1.【解析】

根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.【详解】解:设三角形的三边分别为3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴这个三角形是直角三角形,设斜边上的高为h,则×3x×4x=×5x×h,解得,h=,则这个三角形的三边上的高之比=4x:3x:=20:15:1,故答案为:20:15:1.【点睛】本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.13、1【解析】

由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.【详解】一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.

故答案为1.【点睛】本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.14、【解析】分析:由题干可得b=,然后将其代入所求的分式解答即可.详解:∵的两内项是b、1,两外项是a、2,∴b=,∴=.故本题的答案:.点睛:比例的性质.15、59【解析】由题意得,,解得a=59.故答案为59.16、b>1.【解析】

先确定b≠1,则方程变形为x2=,根据平方根的定义得到>1时,方程有实数解,然后解关于b的不等式即可.【详解】根据题意得b≠1,x2=,当>1时,方程有实数解,所以b>1.故答案为:b>1.【点睛】本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥1)的一元二次方程可采用直接开平方的方法解一元二次方程.17、4【解析】

根据题意,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,由DM=,则BM=,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD为等边三角形,即可得到BD的长度.【详解】解:如图:连接BD,BM,则AC垂直平分BD,则BN=DN,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,∵AD=AB=4,M是AD的中点,∴AM=DM=,∴BM=,∵,∴△ABM是直角三角形,即∠AMB=90°;∵BM是△ABD的中线,∴△ABD是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD是等边三角形.18、众数【解析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.三、解答题(共66分)19、(1)200;(2)62,0.06,38;(3)a=62,c=38,图见解析;(4)1.【解析】

(1)根据50≤x<60的人数及占比即可求出此次抽样调查的样本容量;(2)根据抽样调查的样本容量即可求出a,b,c的值;(3)根据所求即可补全统计图;(4)求出1≤x<90和90≤x≤100的频率和为0.25,即可得到一等奖的分数线.【详解】解:(1)16÷0.08=200,故答案为:200;(2)a=200×0.31=62,b=12÷200=0.06,c=200﹣16﹣62﹣72﹣12=38,故答案为:62,0.06,38;(3)由(2)知a=62,c=38,补全的条形统计图如右图所示;(4)d=38÷200=0.19,∵b=0.06,0.06+0.19=0.25=25%,∴一等奖的分数线是1.【点睛】此题主要考查统计调查,解题的关键是根据题意求出抽样调查的样本容量.20、(1);(2).【解析】

(1)提取公因式-x后再利用完全平方公式分解因式即可;(2)方程两边同乘以(x+3)(x-3),化分式方程为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】(1)原式(2),令代入,∴原分式方程的解为:,【点睛】本题考查了因式分解及解分式方程,正确利用提公因式法及公式法分解因式时解决(1)题的关键;解决(2)题要注意验根.21、(1)见解析;(2)①;②【解析】

(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;

(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;

②分三种情况讨论可知a与b满足的数量关系式.【详解】(1)证明:∵四边形是矩形,∴∴,∵垂直平分,垂足为,∴,∴,∴,∴四边形为平行四边形,又∵∴四边形为菱形,(2)①秒.显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.∴以四点为顶点的四边形是平行四边形时,∴点的速度为每秒,点的速度为每秒,运动时间为秒,∴,∴,解得∴以四点为顶点的四边形是平行四边形时,秒.②与满足的数量关系式是,由题意得,以四点为顶点的四边形是平行四边形时,点在互相平行的对应边上,分三种情况:i)如图1,当点在上、点在上时,,即,得.ii)如图2,当点在上、点在上时,,即,得.iii)如图3,当点在上、点在上时,,即,得.综上所述,与满足的数量关系式是.【点睛】此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.22、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.试题解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直线y=bx+c的解析式为:y=2x+8,∵正方形OABC的对角线的交点D,且正方形边长为4,∴D(2,2);(2)存在,理由为:对于直线y=2x+8,当y=0时,x=-4,∴E点的坐标为(-4,0),根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线为y=2x+t,代入D点坐标(2,2),得:2=4+t,即t=-2,∴平移后的直线方程为y=2x-2,令y=0,得到x=1,∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,则t=5秒;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,∴PH=PQ,在△OPH和△MPQ中,,∴△OPH≌△MPQ(AAS),∴OH=QM,∵四边形CNPG为正方形,∴PG=BQ=CN,∴CP=PG=BM,即.考点:一次函数综合题.【详解】请在此输入详解!23、(1)200;(2)补全条形统计图见解析;D选项所对应扇形的圆心角度数=72°;(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.【解析】

(1)由B社团人数及其所占百分比可得总人数;(2)总人数减去其它社团人数可求得D的人数,再用360°乘以D社团人数所占比例即可得;(3)总人数乘以样本中A、C社团人数和占被调查人数的比例即可得.【详解】解:(1)本次接受调查的学生共有90÷45%=200(人),(2)D社团人数为200-(26+90+34+10)=40(人),补全图形如下:扇形统计图中D选项所对应扇形的圆心角为360°×40(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为300×26+34200=90答:估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.【点睛】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.24、(1)5;(2)直线AC的解析式y=﹣x+;(3)见解析.【解析】

(1)Rt△AOH中利用勾股定理即可求得菱形的边长;(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;(3)根据S△ABC=S△AMB+S△BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.【详解】(1)Rt△AOH中,,所以菱形边长为5;故答案为5;(2)∵四边形ABCO是菱形,∴OC=OA=AB=5,即C(5,0).设直线AC的解析式y=kx+b,函数图象过点A、C,得,解得,直线AC的解析式;(3)设M到直线BC的距离为h,当x=0时,y=,即M(0,),,由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,×5×4=×5×+×5h,解得h=,①当0<t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,S=BP•HM=×(5﹣2t)=﹣t+;②当2.5<t≤5时,BP=2t﹣5,h=,S=BP•h=×(2t﹣5)=t﹣,把S=3代入①中的函数解析式得,3=﹣t+,解得:t=,把S=3代入②的解析式得,3=t﹣,解得:t=.∴t=或.【点睛】本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.25、(1)G(0,4-);(2);(3).【解析】

1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出,那么OG=OA-AG=4-,于是G(0,4-);(2)先在Rt△AGF中,由,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BFtan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)∵F(1,4),B(3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt△AGF中,由勾股定理得,∵B(3,4),∴OA=4,∴OG=4-,∴G(0,4-);(2)在Rt△AGF中,∵,∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,在Rt△BFE中,∵BE=BFtan60°=2,.CE=4-2,.E(3,4-2).设直线EF的表达式为y=kx+b,∵E(3,4-2),F(1,4),∴解得∴;(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:①FG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论