山东省青岛市2023年数学八下期末质量跟踪监视模拟试题含解析_第1页
山东省青岛市2023年数学八下期末质量跟踪监视模拟试题含解析_第2页
山东省青岛市2023年数学八下期末质量跟踪监视模拟试题含解析_第3页
山东省青岛市2023年数学八下期末质量跟踪监视模拟试题含解析_第4页
山东省青岛市2023年数学八下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点关于原点的对称点的坐标为()A. B. C. D.2.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4C.5 D.63.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ4.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A. B. C. D.5.若分式有意义,则的取值范围是()A. B. C. D.6.运用分式基本性质,等式中缺少的分子为()A.a B.2a C.3a D.4a7.下列各式中计算正确的是()A. B. C. D.8.如图,在数轴上表示关于x的不等式组的解集是()A. B. C. D.9.下列命题是假命题的是(

)A.四个角相等的四边形是矩形 B.对角线互相平分的四边形是平行四边形C.四条边相等的四边形是菱形 D.对角线互相垂直且相等的四边形是正方形10.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为()A.1cm2 B.2cm2 C.cm2 D.cm2二、填空题(每小题3分,共24分)11.如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于___(结果保留根号).12.若数据,,…,的方差为6,则数据,,…,的方差是______.13.在Rt△ABC中,∠C=90°,∠A=30°,BC=6,那么AB=_____.14.将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.15.定义运算“*”为:a*b,若3*m=-,则m=______.16.已知甲乙两车分别从A、B两地出发,相向匀速行驶,已知乙车先出发,1小时后甲车再出发.一段时间后,甲乙两车在休息站C地相遇:到达C地后,乙车不休息继续按原速前往A地,甲车休息半小时后再按原速前往B地,甲车到达B地停止运动;乙车到A地后立刻原速返回B地,已知两车间的距离y(km)随乙车运动的时间x(h)变化如图,则当甲车到达B地时,乙车距离B地的距离为_____(km).17.关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=______,c=______.18.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm.三、解答题(共66分)19.(10分)用配方法解方程:x2-6x+5=020.(6分)如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EP、FG.(1)如图1,直接写出EF与FG的关系____________;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.①求证:△FFE≌△PFG;②直接写出EF、EH、BP三者之间的关系;(3)如图3,若点P为CB延长线上的一动点,连接FP,按照(2)中的做法,在图(3)中补全图形,并直接写出EF、EH、BP三者之间的关系.21.(6分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.22.(8分)我们用a表示不大于a的最大整数,用a表示大于a的最小整数.例如:2.52,33,2.53;<2.5>3,<4>5,<1.5>1.解决下列问题:(1)4.5,<3.5>.(2)若x2,则<x>的取值范围是;若<y>1,则y的取值范围是.(3)已知x,y满足方程组;求x,y的取值范围.23.(8分)“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2∶3∶5的比例纳入总分.最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号123456笔试成绩/分669086646584专业技能测试成绩/分959293808892说课成绩/分857886889485(1)写出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这6名选手中序号是多少的选手将被录用?为什么?24.(8分)解不等式x-5225.(10分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).26.(10分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵5元,用360元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)若商店计划购买这两种商品共40件,且投入的经费不超过1150元,那么,最多可购买多少件甲种商品?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).

故选:A.【点睛】本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.2、D【解析】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.3、D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.4、B【解析】试题解析:因为AB=3,AD=4,所以AC=5,,由图可知,AO=BO,则,因此,故本题应选B.5、A【解析】

根据分式有意义的条件,得到关于x的不等式,进而即可求解.【详解】∵分式有意义,∴,即:,故选A.【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键.6、D【解析】

根据分式的基本性质即可求出答案.【详解】解:,故选择:D.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7、D【解析】

根据二次根式的加减法则对各选项进行逐一分析即可.【详解】A.不是同类项,不能合并,故本选项错误.B.,故本选项错误.C.=,故本选项错误D.,本选项正确,故选D【点睛】本题考查二次根的混合运算,熟练掌握计算法则是解题关键8、C【解析】

根据图形可知:x<2且x≥-1,故此可确定出不等式组的解集.【详解】∵由图形可知:x<2且x≥−1,∴不等式组的解集为−1≤x<2.故答案选:C.【点睛】本题考查了在数轴上表示不等式的解集,解题的关键是根据数轴上的已知条件表示出不等式的解集.9、D【解析】

分析是否为真命题,需要分别分析各题设是否能推出结论,根据矩形,平行四边形,菱形,正方形的判定定理判断即可.【详解】解:A、正确,符合矩形的判定定理;

B、正确,符合平行四边形的判定定理;

C、正确,符合菱形的判定定理;

D、错误,例如对角线互相垂直的等腰梯形.

故选:D.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、D【解析】

根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又S△ABO2=S矩形,∴S2=S矩形==;,…,同理:设ABC5O5为平行四边形为S5,S5==.故选:D.【点睛】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.二、填空题(每小题3分,共24分)11、3-【解析】

根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.【详解】解:作CM⊥AB于M,∵等边△ABC的面积是4,∴设BM=x,∴tan∠BCM=,∴BM=CM,∴×CM×AB=×2×CM2=4,∴CM=2,BM=2,∴AB=4,AD=AB=2,在△EAD中,作HF⊥AE交AE于H,则∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.又∵AH+EH=AE=AD=2,∴x+x=2,解得x=3-.∴S△AEF=×2×(3-)=3-.故答案为3-12、1.【解析】

根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【详解】原来的方差,现在的方差==1,方差不变.故答案为:1.【点睛】此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.13、1【解析】

根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.【详解】∵在Rt△ABC中,∠C=90°,∠A=30°,∴=,∵BC=6,∴AB=1.故答案为1.【点睛】本题主要考查含30度角的直角三角形的知识点,此题较简单,需要同学们熟记直角三角形的性质:30°所对的直角边等于斜边的一半.14、【解析】

二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.【详解】将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,故答案为.15、—2【解析】

试题分析:根据定义运算“*”:a*b,即可得方程,在解方程即可得到结果.解:由题意得,解得.考点:新定义运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.16、1【解析】

先从图象中获取信息得知A,B两地之间的距离及乙的行驶时间求出乙车的速度,然后再根据两车的相遇时间求出甲的速度,然后求出甲车行完全程的时间,就可以算出此时乙车的行驶时间,用总时间减去甲行完全程时的时间求出乙车剩下的时间,再乘以乙车的速度即可求出路程.【详解】由图象可知,A、B两地相距990千米,而乙来回用时22小时,因此乙车的速度为:990÷(22÷2)=90千米/小时,甲乙两车在C地相遇后,甲休息0.5小时,乙继续走,所以乙车出发7小时后两车相遇,因此甲车速度为:(990﹣90×7)÷(7﹣1)=60千米/小时,甲车行完全程的时间为:990÷60=16.5小时,此时乙车已经行驶16.5+0.5+1=18小时,因此乙车距B地还剩22﹣18=4小时的路程,所以当甲车到达B地时,乙车距离B地的距离为90×4=1千米,故答案为:1.【点睛】本题主要考查一次函数的应用,能够从图象中获取有用信息并掌握行程问题的解法是解题的关键.17、21(答案不唯一,满足即可)【解析】

若关于x的一元二次方程有两个实数根,所以△=b2-4ac≥0,建立关于b与c的不等式,求得它们的关系后,写出一组满足题意的b,c的值.【详解】解:∵关于x的一元二次方程有两个实数根,

∴△=b2-4ac≥0,

即b2-4×c=b2-c≥0,

∴b=2,c=1能满足方程.故答案为2,1(答案不唯一,满足即可).【点睛】本题考查根的判别式,掌握方程有两个实数根的情况是△≥0是解题的关键.18、40或.【解析】

利用30°角直角三角形的性质,首先根据勾股定理求出DE的长,再分两种情形分别求解即可解决问题;【详解】如图1中,,,,,,设,在中,,,,如图2中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长.如图中,当时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长综上所述,满足条件的平行四边形的周长为或,故答案为为或.【点睛】本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(共66分)19、x1=5,x2=1.【解析】

首先移项,把方程变形为x2-6x=-5的形式,方程两边同时加上一次项系数的一半,则方程的左边是完全平方式,右边是常数,然后利用直接开平方法即可求解.【详解】x2-6x+5=0移项得,x2-6x=-5x2-6x+9=-5+9,∴(x-3)2=4,∴x-3=±2,解得x1=5,x2=1.【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20、(1)EF⊥FG,EF=FG;(2)详见解析;(3)补全图形如图3所示,EF+BP=EH.【解析】

(1)根据线段中点的定义求出AE=AF=BF=BG,得出∠AFE=∠AEF=∠BFG=∠BGF=45°,求出∠EFG的度数,由“SAS”证得△AEF和△BFG全等,得出EF=FG,即可得出结果;(2)①由旋转的性质得出∠PFH=90°,FP=FH,证出∠GFP=∠EFH,由SAS即可得出△HFE≌△PFG;②由全等三角形的性质得出EH=PG,由等腰直角三角形的性质得出EF=AF=BG,因此BG=EF,再由BG+GP=BP,即可得出结论;(3)根据题意作出图形,然后同(2)的思路求解即可.【详解】解:(1)如图1所示:∵点E、F、G分别是边AD、AB、BC的中点,∴AE=AF=BF=BG,∵四边形ABCD是正方形,∴∠AFE=∠AEF=∠BFG=∠BGF=45°,∴∠EFG=180°-∠AFE-∠BFG=180°-45°-45°=90°,∴EF⊥FG,在△AEF和△BFG中,,∴△AEF≌△BFG(SAS),∴EF=FG,故答案为EF⊥FG,EF=FG;(2)如图2所示:①证明:由(1)得:∠EFG=90°,EF=FG,∵将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,∴∠PFH=90°,FP=FH,∵∠GFP+∠PFE=90°,∠PFE+∠EFH=90°,∴∠GFP=∠EFH,在△HFE和△PFG中,,∴△HFE≌△PFG(SAS);②解:由①得:△HFE≌△PFG,∴EH=PG,∵AE=AF=BF=BG,∠A=∠B=90°,∴EF=AF=BG,∴BG=EF,∵BG+GP=BP,∴EF+EH=BP;(3)解:补全图形如图3所示,EF+BP=EH.理由如下:由(1)得:∠EFG=90°,EF=FG,∵将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,∴∠PFH=90°,FP=FH,∵∠EFG+∠GFH=∠EFH,∠PFH+∠GFH=GFP,∴∠GFP=∠EFH,在△HFE和△PFG中,,∴△HFE≌△PFG(SAS),∴EH=PG,∵AE=AF=BF=BG,∠A=∠ABC=90°,∴EF=AF=BG,∴BG=EF,∵BG+BP=PG,∴EF+BP=EH.【点睛】本题是四边形综合题目,考查了全等三角形的判定与性质,正方形的性质,等腰直角三角形的判定与性质,勾股定理,旋转的性质等知识;本题综合性强,作辅助线构造出全等三角形是解题的关键.21、证明见解析.【解析】

可通过证明DM∥BN,DM=BN来说明四边形是平行四边形,也可通过DM=BN,BM=DN来说明四边形是平行四边形.【详解】(法一)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵DM∥BN,∴四边形MBND是平行四边形.(法二)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△AMN和△CND中,又∵,∴△AMN≌△CND,∴BM=DN.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵BM=DN,∴四边形MBND是平行四边形.点睛:本题考查了平行四边形的性质和判定,题目难度不大.22、(1)-5,4;(1)1≤x<3,-1≤y<-1;(3)-1≤x<0,1≤y<1

【解析】

(1)根据题目所给信息求解;

(1)根据[1.5]=1,[3]=3,[-1.5]=-3,可得[x]=1中的1≤x<3,根据<a>表示大于a的最小整数,可得<y>=-1中,-1≤y<-1;

(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【详解】解:(1)由题意得:[-4.5]=-5,<y>=4;

故答案为:-5,4;(1)∵[x]=1,

∴x的取值范围是1≤x<3;

∵<y>=-1,

∴y的取值范围是-1≤y<-1;

故答案为:1≤x<3,-1≤y<-1;(3)解方程组,

得:,

∴x的取值范围为-1≤x<0,y的取值范围为1≤y<1.【点睛】本题考查了一元一次不等式的应用与解二元一次方程组,解答本题的关键是读懂题意,根据题目所给的信息进行解答.23、(1)中位数是1.5分;众数是1分;(2)序号是3,6号的选手将被录用,见解析.【解析】

(1)利用中位数、众数的定义求解;

(2)先求出序号为5号的选手成绩和序号为6号的选手成绩,再与序号为1、2、3、4号选手的成绩进行比较,即可得出答案.【详解】将说课的成绩按从小到大的顺序排列:78、1、1、86、8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论