陕西省西安市交通大附属中学2022-2023学年数学八下期末学业质量监测试题含解析_第1页
陕西省西安市交通大附属中学2022-2023学年数学八下期末学业质量监测试题含解析_第2页
陕西省西安市交通大附属中学2022-2023学年数学八下期末学业质量监测试题含解析_第3页
陕西省西安市交通大附属中学2022-2023学年数学八下期末学业质量监测试题含解析_第4页
陕西省西安市交通大附属中学2022-2023学年数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是()A. B. C. D.52.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有()A. B. C. D.3.对角线相等且互相平分的四边形是()A.一般四边形 B.平行四边形 C.矩形 D.菱形4.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形5.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0) B.(0,4) C.(0,5) D.(0,)6.若分式x2-1x2+x-2的值为零,则A.x=1 B.x=±1 C.x=-1 D.x≠17.如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.58.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1 B.y=2x2﹣3C.y=2(x﹣8)2+1 D.y=2(x﹣8)2﹣39.如图,在平行四边形中,于点E,以点B为中心,取旋转角等于,将顺时针旋转,得到.连接,若,,则的度数为()A. B. C. D.10.若点A(-3,y1),B(1,y2)都在直线y=12x+2上,则yA.y1<y2 B.y1=y2 C.y11.平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等12.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°二、填空题(每题4分,共24分)13.若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是_____.14.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.15.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.16.分解因式:a2-4=________.17.平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是_____.18.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是_______.三、解答题(共78分)19.(8分)先化简,再求值:),其中.20.(8分)先化简,再求值:÷(a+),其中a=﹣1.21.(8分)列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?22.(10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.23.(10分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F(1)求证:AE=DF,(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.24.(10分)如图所示,在△ABC中,点D为BC边上的一点,AD=12,BD=16,AB=20,CD=1.(1)试说明AD⊥BC.(2)求AC的长及△ABC的面积.(3)判断△ABC是否是直角三角形,并说明理由.25.(12分)已知:如图,在中,延长到,使得.连结,.(1)求证:;(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).26.温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?

参考答案一、选择题(每题4分,共48分)1、D【解析】

先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.【详解】解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2,又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=8,S2=3,∴S1=S3−S2=8−3=5,故选:D.【点睛】本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.2、D【解析】

由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【详解】∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正确,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正确,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正确,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,综上所述:正确的结论有①②③④,故选D.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.3、C【解析】

由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;【详解】∵四边形的对角线互相平分,∴此四边形是平行四边形;又∵对角线相等,∴此四边形是矩形;故选B.【点睛】考查矩形的判定,常见的判定方法有:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.4、D【解析】试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.考点:命题与定理.5、B【解析】分析:根据勾股定理解答本题即可.详解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,

所以OB==4,

所以点B的坐标为(0,4),

故选B.点睛:本题考查了两点之间的距离,解本题的关键是根据勾股定理解答.6、C【解析】

直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】解:∵分式x2∴x2−1=0且x2+x−2≠0,解得:x=−1.故选:C.【点睛】此题主要考查了分式的值为零的条件,正确解方程是解题关键.7、A【解析】试题分析:过点P作PE⊥OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.解:如图,过点P作PE⊥OA于E,∵OC平分∠AOB,PD⊥OB,∴PE=PD=3,∵动点Q在射线OA上运动,∴PQ≥3,∴线段PQ的长度不可能是1.故选A.点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.8、A【解析】【分析】根据平移的规律即可得到平移后函数解析式.【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1;故选A【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.9、D【解析】

根据平行四边形的性质得∠ABC=∠ADC=60°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=30°,然后根据旋转的性质得∠BA′E′=∠BAE=30°,于是可得∠DA′E′=160°.【详解】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°−50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为:D.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.10、A【解析】

先根据直线y=12x+1【详解】∵直线y=12x+1,k=12>∴y随x的增大而增大,又∵-3<1,∴y1<y1.故选A.【点睛】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.11、D【解析】

根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.【详解】平行四边形的对角相等,对角线互相平分,对边平行且相等.故选D.【点睛】此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.12、C【解析】

根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠ACD=∠BAC,

由折叠的性质得:∠BAC=∠B′AC,

∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;

故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.二、填空题(每题4分,共24分)13、1【解析】

根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【详解】解:∵将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是4×4=1,故答案为:1.【点睛】本题考查了方差:一般地设有n个数据,x1,x2,…xn,若每个数据都扩大相同的倍数后,方差则变为这个倍数的平方倍.14、x>1.【解析】把点P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以点P的坐标为(1,1),观察图象可得不等式1x﹣3>kx+b的解集是x>1.15、1.【解析】

首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.【详解】2x﹣a≤﹣1,x≤,∵解集是x≤1,∴=1,解得:a=1,故答案为1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.16、(a+2)(a-2);【解析】

有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】解:a2-4=(a+2)(a-2).故答案为:(a+2)(a-2).考点:因式分解-运用公式法.17、【解析】

依题意得OP=2,OQ=3,在直角三角形OPQ中,由勾股定理得PQ==.【详解】解:在直角坐标系中设原点为O,三角形OPQ为直角三角形,则OP=2,OQ=3,∴PQ=.故答案填:.18、【解析】

作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【详解】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=1,在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,由勾股定理得,设AC=AE=x,由勾股定理得x2+32=(x+)2,解得x=.∴AC=.故答案为:.【点睛】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(共78分)19、,.【解析】试题分析:先通分,然后进行四则运算,最后将a的值代入计算即可.试题解析:原式===,当时,原式===.考点:分式的化简求值.20、,【解析】

先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.【详解】解:将代入上式有原式=.故答案为:;.【点睛】本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.21、原计划每天加工20套.【解析】

设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x套,由题意得:解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用22、(1)购买甲种树苗500株,乙种树苗300株(2)320株(3)当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元【解析】

(1)设购买甲种树苗株,乙种树苗株,列方程组求得(2)设购买甲种树苗株,乙种树苗株,列不等式求解(3)设甲种树苗购买株,购买树苗的费用为元,列出关系式,根据函数的性质求出w的最小值.【详解】(1)设购买甲种树苗株,乙种树苗株,得解得答:购买甲种树苗500株,乙种树苗300株.(2)设购买甲种树苗株,乙种树苗株,得解得答:甲种树苗至少购买320株.(3)设甲种树苗购买株,购买树苗的费用为元,则∵∴随增大而减小所以当时,有最小值,最小=元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元.23、(1)详见解析;(2)平行四边形AEDF为菱形;理由详见解析【解析】试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.试题解析:(1)∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.考点:1.全等三角形的判定与性质;2.菱形的判定.24、(1)见解析;(2)15,150;(3)是【解析】试题分析:(1)根据勾股定理的逆定理即可判断;(2)先根据勾股定理求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论