




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位2.为测量如图所示的斜坡垫的倾斜度,小明画出了斜坡垫的侧面示意图,测得的数据有:,则该斜坡垫的倾斜角的正弦值是()A. B. C. D.3.已知Rt△ABC中,∠C=90º,AC=4,BC=6,那么下列各式中,正确的是()A.sinA= B.cosA= C.tanA= D.tanB=4.如图,将绕点按逆时针方向旋转后得到,若,则的度数为()A. B. C. D.5.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣5x的图象上,则y1,y2,y3A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y16.下列事件属于随机事件的是()A.旭日东升 B.刻舟求剑 C.拔苗助长 D.守株待兔7.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=38.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)9.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为()A. B. C. D.10.二次函数的最小值是()A.2 B.2 C.1 D.111.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形12.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°二、填空题(每题4分,共24分)13.已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差,乙种棉花的纤维长度的方差,则甲、乙两种棉花质量较好的是▲.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.15.抛物线y=x2﹣4x+3的顶点坐标为_____.16.如图,已知一次函数y=kx-4的图象与x轴、y轴分别交于A、B两点,与反比例函数在第一象限内的图象交于点C,且A为BC的中点,则k=________.17.某学生想把放置在水平桌面上的一块三角板(,),绕点按顺时针方向旋转角,转到的位置,其中、分别是、的对应点,在上(如图所示),则角的度数为______.18.若关于的一元二次方程有实数根,则的取值范围是__________.三、解答题(共78分)19.(8分)如图,为了测量上坡上一棵树的高度,小明在点利用测角仪测得树顶的仰角为,然后他沿着正对树的方向前进到达点处,此时测得树顶和树底的仰角分别是和.设,且垂足为.求树的高度(结果精确到,).20.(8分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.21.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)22.(10分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.(1)求证:是的切线;(2)若的半径为2,求图中阴影部分的面积.23.(10分)已知如图AB∥EF∥CD,(1)△CFG∽△CBA吗?为什么?(2)求的值.24.(10分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.25.(12分)已知关于x的一元二次方程x1=1(1-m)x-m1有两个实数根为x1,x1.(1)求m的取值范围;(1)设y=x1+x1,求当m为何值时,y有最小值.26.满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
参考答案一、选择题(每题4分,共48分)1、B【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.故选:B.【点睛】本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.2、A【分析】利用正弦值的概念,的正弦值=进行计算求解.【详解】解:∵∴在Rt△ABC中,故选:A.【点睛】本题考查锐角三角函数的概念,熟练掌握正弦值的概念,熟记的正弦值=是本题的解题关键.3、D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.【详解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此选项错误;B、cosA=,故此选项错误;C、tanA=,故此选项错误;D、tanB=,故此选项正确.故选:D.
【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键.4、D【分析】由题意可知旋转角∠BCB′=60°,则根据∠ACB′=∠BCB′+∠ACB即可得出答案.【详解】解:根据旋转的定义可知旋转角∠BCB′=60°,∴∠ACB′=∠BCB′+∠ACB=60°+25°=85°.故选:D.【点睛】本题主要考查旋转的定义,解题的关键是找到旋转角,以及旋转后的不变量.5、C【解析】将点A(-1,y1),B(1,y2),C(3,y3)分别代入反比例函数y=﹣5x,并求得y1、y2【详解】根据题意,得
y1=-5-1=5,即y1=5,
y2=-51=-5,即y2=-5,
y3=-53=-53,即【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,解题关键是熟记点的横纵坐标满足反比例函数的解析式.6、D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.7、B【分析】把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选B.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8、C【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.9、D【分析】延长交网格于,连接,得直角三角形ACD,由勾股定理得出、,由三角函数定义即可得出答案.【详解】解:延长交网格于,连接,如图所示:则,,,的正切值;故选:D.【点睛】本题考查了解直角三角形以及勾股定理的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.10、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.11、C【解析】试题分析:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.考点:命题与定理.12、A【解析】试题分析:∵弧长,∴圆心角.故选A.二、填空题(每题4分,共24分)13、甲.【解析】方差的运用.【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.由于,因此,甲、乙两种棉花质量较好的是甲.14、1.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.15、(2,﹣1).【解析】先把函数解析式配成顶点式得到y=(x-2)2-1,然后根据顶点式即可得到顶点坐标.解:y=(x-2)2-1,
所以抛物线的顶点坐标为(2,-1).
故答案为(2,-1).“点睛”本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x-h)2+k;两根式:y=a(x-x1)(x-x2).16、4【详解】把x=0代入y=kx-4,得y=-4,则B的坐标为(0,-4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入,得x=2,∴C点的坐标为(2,4),把C(2,4)的坐标代入y=kx-4,得2k-4=4,解得k=4,故答案为4.17、60°【分析】根据题意有∠ACB=90,∠A=30,进而可得∠ABC=60,又有∠ACA′=BCB′=∠ABA′=,可得∠CBB′=(180−),代入数据可得答案.【详解】∵∠ACB=90,∠A=30,∴∠ABC=60,∴∠ACA′=BCB′=∠ABA′=,∠CBB′=(180−),∴=∠ABC=60.故答案为:60.【点睛】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点是旋转中心;②旋转方向;③旋转角度.18、【分析】一元二次方程有实数根,即【详解】解:一元二次方程有实数根解得【点睛】本题考查与系数的关系.三、解答题(共78分)19、15.7米【分析】设,在Rt△BCQ中可得,然后在Rt△PBC中得,进而得到PQ=,,然后利用建立方程即可求出,得到PQ的高度.【详解】解:设,∵在Rt△BCQ中,,∴又∵在Rt△PBC中,,∴∴,又∵,∴∵∴,解得:∴【点睛】本题考查了解直角三角形的应用,熟练利用三角函数解直角三角形是解题的关键.20、38°【解析】试题分析:根据平行线的性质先求得∠ABD=26°,再根据角平分线的定义求得∠ABC=52°,再根据直角三角形两锐角互余即可得.试题解析:∵l1∥l2,∠1=26°,∴∠ABD=∠1=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.21、(20-5)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.详解:过点B作BD⊥AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C两地的距离为(20-5)千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.22、(1)见解析(2)图中阴影部分的面积为π.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【详解】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴图中阴影部分的面积为:-.23、(1)△CFG∽△CBA,见解析;(2)【分析】(1)由题意利用相似三角形的判定定理-平行模型进行分析证明即可;(2)根据题意平行线分线段成比例定理进行分析求值.【详解】解:(1)△CFG∽△CBA,理由如下,∵AB∥EF,∴FG∥AB,∴△CFG∽△CBA.(2)∵AB∥EF∥CD,∴,∴,∵△CFG∽△CBA,∴.【点睛】本题考查相似三角形的性质及平行线分线段成比例定理,解题的关键是熟练运用相似三角形的性质以及判定.24、(1)0.1;(2)小颖的说法是错误的,理由见解析(3)列表见详解;【分析】(1)根据频率等于频数除以总数,即可分别求出“3点朝上”的频率和“5点朝上”的频率.(2)频率不等于概率,只能估算概率,故小颖的说法不对,事件发生具有随机性,故得知小红的说法也不对.(3)列表,找出点数之和是3的倍数的结果,除以总的结果,即可解决.【详解】解:(1)“3点朝上”的频率:6÷60=0.1“5点朝上”的频率:20÷60=.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明5点朝上的概率最大,频率不等于概率;小红的说法是错误的,因为事件发生具有随机性,故“点朝上”的次数不一定是100次.(3)列表如下:共有36种情况,点数之和为3的倍数的情况有12种.故P(点数之和为3的倍数)==.【点睛】本题主要考查了频率的公式、频率与概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西北工业大学《建设工程成本规划与控制》2023-2024学年第二学期期末试卷
- 销售管理模块培训课程
- 湖南科技大学《影视话剧表演》2023-2024学年第二学期期末试卷
- 福州英华职业学院《影视经典研究》2023-2024学年第一学期期末试卷
- 2025年湖南省株洲市7校高三第一次调研测生物试题含解析
- 南昌工学院《高等数学E》2023-2024学年第一学期期末试卷
- 新乡学院《危险废物利用与处理》2023-2024学年第二学期期末试卷
- 护理查房:急性酒精中毒
- 江西财经大学现代经济管理学院《庭院绿化》2023-2024学年第二学期期末试卷
- 河南工业和信息化职业学院《商务日语口语》2023-2024学年第二学期期末试卷
- Q∕SY 05175-2019 原油管道运行与控制原则
- 汽车收音机天线的参数
- 供配电系统毕业设计
- 《艺术学概论考研》课件艺概绪论
- 工厂致全体员工一份感谢信
- 怎样做一名合格的高校中层领导干部( 54页)
- 中职一年级数学课外活动趣味数学基础知识竞赛课件(必答+选答+风险题含倒计时PPT)
- 工艺评审记录表
- 新加坡观赏鱼国际贸易发展模式及对我国的启示
- 移动式操作平台专项施工方案
- 毕业设计(论文)中期报告-感应电机矢量控制及仿真
评论
0/150
提交评论