版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为()A. B.C. D.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝上C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球3.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.644.二次函数图象的顶点坐标是()A. B. C. D.5.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为()A.12 B.﹣12 C.6 D.﹣66.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件.如果全组共有x名同学,则根据题意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×27.如图,四边形和是以点为位似中心的位似图形,若,则四边形与四边形的面积比为()A. B. C. D.8.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.9.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:①若,则;②若点与在该抛物线上,当时,则;③关于的一元二次方程有实数解.其中正确结论的个数是()A. B. C. D.10.已知如图中,点为,的角平分线的交点,点为延长线上的一点,且,,若,则的度数是().A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为_____.12.如图,在中,则AB的长为________(用含α和b的代数式表示)13.在函数中,自变量x的取值范围是.14.如图,过圆外一点作圆的一条割线交于点,若,,且,则_______.15.当时,函数的最大值是8则=_________.16.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=1.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).17.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为__________.18.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为_____.三、解答题(共66分)19.(10分)已知二次函数(是常数).(1)当时,求二次函数的最小值;(2)当,函数值时,以之对应的自变量的值只有一个,求的值;(3)当,自变量时,函数有最小值为-10,求此时二次函数的表达式.20.(6分)公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?21.(6分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.22.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)求将材料加热时,y与x的函数关系式;(2)求停止加热进行操作时,y与x的函数关系式;(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?23.(8分)如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.24.(8分)用一块边长为的正方形薄钢片制作成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).若做成的盒子的底面积为时,求截去的小正方形的边长.25.(10分)我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)26.(10分)解下列方程:(1);(2).
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接关键二次函数的平移规律“左加右减,上加下减”解答即可.【详解】将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为:故选:B【点睛】本题考查的是二次函数的平移,掌握其平移规律是关键,需注意:二次函数平移时必须化成顶点式.2、D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,故选:D.【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.3、C【分析】设该快递公司这两个月投递总件数的月平均增长率为x,根据今年8月份与10月份完成投递的快递总件数,即可得出关于x的一元二次方程,此题得解.【详解】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6(1+x)2=8.1.故选:C.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知增长率的问题.4、B【解析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标.【详解】∵二次函数y=﹣(x+2)2+6,∴该函数的顶点坐标为(﹣2,6),故选:B.【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.5、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】解:设:A、B点的坐标分别是A(,m)、B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=6,则k1﹣k2=1.故选:A.【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设、两点坐标,表示出相应线段长度即可求解问题.6、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键.7、C【解析】由位似图的面积比等于位似比的平方可得答案.【详解】∵即四边形和的位似比为∴四边形和的面积比为故选:C.【点睛】本题考查了位似图的性质,熟记位似图的面积比等于位似比的平方是解题的关键.8、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.9、C【分析】利用二次函数的性质一一进行判断即可得出答案.【详解】解:①抛物线(其中是常数,)顶点坐标为,,,,∴c>>0.故①小题结论正确;②顶点坐标为,点关于抛物线的对称轴的对称点为点与在该抛物线上,,,,当时,随的增大而增大,故此小题结论正确;③把顶点坐标代入抛物线中,得,一元二次方程中,,关于的一元二次方程无实数解.故此小题错误.故选:C.【点睛】本题是一道关于二次函数的综合性题目,具有一定的难度,需要学生熟练掌握二次函数的性质并能够熟练运用.10、C【分析】连接BO,证O是△ABC的内心,证△BAO≌△DAO,得∠D=∠ABO,根据三角形外角性质得∠ACO=∠BCO=∠D+∠COD=2∠D,即∠ABC=∠ACO=∠BCO,再推出∠OAD+∠D=180°-138°=42°,得∠BAC+∠ACO=84°,根据三角形内角和定理可得结果.【详解】连接BO,由已知可得因为AO,CO平分∠BAC和∠BCA所以O是△ABC的内心所以∠ABO=∠CBO=∠ABC因为AD=AB,OA=OA,∠BAO=∠DAO所以△BAO≌△DAO所以∠D=∠ABO所以∠ABC=2∠ABO=2∠D因为OC=CD所以∠D=∠COD所以∠ACO=∠BCO=∠D+∠COD=2∠D所以∠ABC=∠ACO=∠BCO因为∠AOD=138°所以∠OAD+∠D=180°-138°=42°所以2(∠OAD+∠D)=84°即∠BAC+∠ACO=84°所以∠ABC+∠BCO=180°-(∠BAC+∠ACO)=180°-84°=96°所以∠ABC=96°=48°故选:C【点睛】考核知识点:三角形的内心.利用全等三角形性质和角平分线性质和三角形内外角定理求解是关键.二、填空题(每小题3分,共24分)11、1.【解析】试题解析:抛物线的对称轴x=-=2,点B坐标(0,3),∵四边形ABCD是正方形,点A是抛物线顶点,∴B、D关于对称轴对称,AC=BD,∴点D坐标(1,3)∴AC=BD=1.考点:1.正方形的性质;2.二次函数的性质.12、.【分析】根据余弦函数的定义可解.【详解】解:根据余弦函数的定义可知,所以AB=.故答案是:.【点睛】本题考查了三角函数的定义,牢记定义是关键.三角函数的定义是本章中最重要最基础的知识点,一定要掌握.13、【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.14、1【分析】作OD⊥AB于D,由垂径定理得出AD=BD,由三角函数定义得出sin∠OAB=,设OD=4x,则OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性质得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【详解】作OD⊥AB于D,如图所示:则AD=BD,∵sin∠OAB=,∴设OD=4x,则OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案为:1.【点睛】本题看了垂径定理、勾股定理、三角函数定义等知识;熟练掌握垂径定理和勾股定理是解题的关键.15、或【分析】先求出二次函数的对称轴,根据开口方向分类讨论决定取值,列出关于a的方程,即可求解;【详解】解:函数,则对称轴为x=2,对称轴在范围内,当a<0时,开口向下,有最大值,最大值在x=2处取得,即=8,解得a=;当a>0时,开口向上,最大值在x=-3处取得,即=8,解得a=;故答案为:或;【点睛】本题主要考查了二次函数的最值,掌握二次函数的性质是解题的关键.16、①②④.【解析】①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正确;③∵AF=1,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正确.故答案为①②④.17、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度.【详解】根据题意有∴设抛物线的表达式为将A,B,D代入得解得∴当时,故答案为:.【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键.18、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-1.三、解答题(共66分)19、(1)当x=2时,;(2)b=±3;
(3)或【分析】(1)将代入并化简,从而求出二次函数的最小值;(2)根据自变量的值只有一个,得出根的判别式,从而求出的值;(3)当,对称轴为x=b,分b<1、、三种情况进行讨论,从而得出二次函数的表达式.【详解】(1)当b=2,c=5时,∴当x=2时,(2)当c=3,函数值时,
∴∵对应的自变量的值只有一个,
∴,∴b=±3(3)
当c=3b时,∴抛物线对称轴为:x=b①b<1时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而增大,∴当x=1时,y最小.∴∴b=﹣11②,当x=b时,y最小.∴∴,(舍去)
③时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而
减小,∴当x=5时,y最小.∴,∴b=5(舍去)综上可得:b=﹣11或b=5∴二次函数的表达式:或【点睛】本题考查了二次函数的性质和应用,掌握根的判别式、二次函数的性质和解二次函数的方法是解题的关键.20、(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m与x的函数图象,列出m与x的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x=70得x=>5,不符合题意;如果5x+10=70得x=1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m=40当5<x≤15时,设m=kx+b将(5,40)(15,60)代入,得∴且b=30∴m=2x+30①当0≤x≤5时w=(62﹣40)•8x=176x∵w随x的增大而增大∴当x=5时,w最大为880;②当5<x≤15时w=(62﹣2x﹣30)(5x+10)=﹣10x2+140x+320∴当x=7时,w最大为810∵880>810∴当x=5时,w取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.21、(1);(2).【分析】(1)根据概率公式计算即可.(2)画树状图展示所有12种等可能的结果数,找出小红获胜的结果数,然后根据概率公式求解【详解】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.【点睛】本题考查的知识点是利用树状图求事件的概率问题,根据题意画出树状图是解题的关键.22、(1)y=9x+15;(2)y=;(3)15分钟【解析】(1)设加热时y=kx+b(k≠0),停止加热后y=a/x(a≠0),把b=15,(5,60
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告牌拆除工程质量评估合同
- 2024年度特许经营合同的特许经营权标的及义务
- 2024年度股权投资合同的投资金额及出资方式
- 2024年度企业形象设计及推广合同2篇
- 2024年度广告代理合同:广告公司为品牌提供广告代理服务
- 2024年度电脑系统集成合同:操作系统迁移、数据迁移及优化3篇
- 《齿轮加工》课件
- 《薪酬与考核方案》课件
- 《低血容量休克学习》课件
- 2024年度汽车4S店销售劳动合同2篇
- 办公技能竞赛试题
- 北师大版九年级物理全一册电子课本教材
- 企业数字化转型背景下供应链协同管理优化方案
- 2024年绵阳科技城新区事业单位考核公开招聘高层次人才10人(高频重点复习提升训练)共500题附带答案详解
- 韶关市仁化县教育局招聘中小学临聘教师笔试真题2022
- 七年级英语上册(人教版2024)新教材解读课件
- 新大象版六年级上册科学全册知识点 (超全)
- 电力专业数据传输(EPDT)通信系统 空中接口呼叫控制层技术规范 标准编制说明
- 2024年东南亚集装箱班轮运输市场深度研究及预测报告
- 部编版(2024)一年级语文上册第7课《两件宝》精美课件
- 怎样做一名合格的护士课件
评论
0/150
提交评论